22 research outputs found
The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide
http://www.nature.com/ismej/journal/v6/n2/full/ismej201199a.htmlOne of the major factors associated with global change is the ever-increasing concentration of atmospheric CO2. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO2 conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO2. PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO2, and such significant effects of eCO2 on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO2. Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO2. Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO2 and environmental factors shaping the microbial community structure
Antimicrobial Resistance in Agriculture
In this article, the current knowledge and knowledge gaps in the emergence and spread of antimicrobial resistance (AMR) in livestock and plants and importance in terms of animal and human health are discussed. Some recommendations are provided for generation of the data required in order to develop risk assessments for AMR within agriculture and for risks through the food chain to animals and humans
Valores en la educación infantil : un año en la clase de las Jirafas
Resumen basado en el de la publicaciónSe pretende mostrar los dinamismos de la educación en valores que se dan día a día en una clase de Educación Infantil. Durante un curso escolar, se acompaña a un grupo de alumnos y a su profesora para ver cómo en la clase de las jirafas se cuidan las prácticas de gestión del conocimiento, se fomentan los espacios de dialogo y deliberación y se construyen lazos que no dejan indiferentes a ninguno de sus protagonistas. Y es que, la educación en valores en una comunidad escolar es una tarea dinámica, una experiencia que impregna el clima y la atmosfera de una institución y que permite a sus protagonistas vivir experiencias de autonomía y solidaridad en primera persona.CataluñaBiblioteca de Educación del Ministerio de Educación, Cultura y Deporte; Calle San Agustín, 5 - 3 planta; 28014 Madrid; Tel. +34917748000; [email protected]
Low-energy electron beam has severe impact on seedling development compared to cold atmospheric pressure plasma
Sprouts are germinated seeds that are often consumed due to their high nutritional content and health benefits. However, the conditions for germination strongly support the proliferation of present bacteria, including foodborne pathogens. Since sprouts are consumed raw or minimally processed, they are frequently linked to cases of food poisoning. Therefore, a seed decontamination method that provides efficient inactivation of microbial pathogens, while maintaining the germination capacity and quality of the seeds is in high demand. This study aimed to investigate and compare seed decontamination by cold atmospheric-pressure plasma and low-energy electron beam with respect to their impact on seed and seedling quality. The results show that both technologies provide great potential for inactivation of microorganisms on seeds, while cold plasma yielded a higher efficiency with 5 log units compared to a maximum of 3 log units after electron beam treatment. Both techniques accelerated seed germination, defined by the percentage of hypocotyl and leaf emergence at 3 days, with short plasma treatment (< 120 s) and all applied doses of electron beam treatment (8-60 kGy). However, even the lowest dose of electron beam treatment at 8 kGy in this study caused root abnormalities in seedlings, suggesting a detrimental effect on the seed tissue. Seeds treated with cold plasma had an eroded seed coat and increased seed wettability compared to electron beam treated seeds. However, these effects cannot explain the increase in the germination capacity of seeds as this was observed for both techniques. Future studies should focus on the investigation of the mechanisms causing accelerated seed germination and root abnormalities by characterizing the molecular and physiological impact of cold plasma and electron beam on seed tissue.SP
Analysis of the bacterial epiphytic microbiota of oak leaf lettuce with 16S ribosomal RNA gene analysis
The leaf microbiota has major influences on the quality of ready-to-eat lettuce. While studies investigating the epi- and endophytic microbiota of lettuce have been published, no protocols focusing only on the epiphytic microbiota exist. As the epiphytic microbiota may be especially influenced by technological steps in the production of ready-to-eat lettuce, an in-depth knowledge of these microorganisms is essential with regard to consumer safety and spoilage. Currently it is not clear to what extent results gained from single samples are representative of the community composition. A technique for the separation of bacterial cells from the leaf surface was applied to green oak leaf lettuce. The bacterial diversity was analysed in triplicate with high throughput Roche 454 sequencing of prokaryotic 16S rRNA genes to analyse the intra-sample variation. Sequence analysis revealed members of the phyla Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria and Verrucomicrobia, and of the candidate division WYO. The ten most abundant proteobacterial genera in all three samples were Alkanindiges (24.6%), Pseudomonas (11.3%), Sphingomonas (8.6%), Janthinobacterium (8.3%), Acinetobacter (4.3%), Polaromonas (1.3%), Erwinia (1.1%), and Methylobacterium (1.1%). The genera Pedobacter (2.5%) and Hymenobacter (1.4%) dominated the phylum Bacteroidetes. The intra-sample variation was less than 0.7% for seven of these most abundant genera with the exception of Pseudomonas, Janthinobacterium and Alkanindiges, where larger standard deviations were obtained. This low intra-sample variation demonstrates that the established technique based on oak leaf lettuce is suitable for the culture-independent analysis of the epiphytic bacterial microbiota of produce
Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis
The arbuscular mycorrhizal (AM) symbiosis represents the most widely distributed mutualistic root symbiosis. We report that root extracts of mycorrhizal plants contain a lipophilic signal capable of inducing the phosphate transporter genes StPT3 and StPT4 of potato (Solanum tuberosum L.), genes that are specifically induced in roots colonized by AM fungi. The same signal caused rapid extracellular alkalinization in suspension-cultured tomato (Solanum lycopersicum L.) cells and induction of the mycorrhiza-specific phosphate transporter gene LePT4 in these cells. The active principle was characterized as the lysolipid lyso-phosphatidylcholine (LPC) via a combination of gene expression studies, alkalinization assays in cell cultures, and chromatographic and mass spectrometric analyses. Our results highlight the importance of lysophospholipids as signals in plants and in particular in the AM symbiosis