3,170 research outputs found

    A universal form of slow dynamics in zero-temperature random-field Ising model

    Full text link
    The zero-temperature Glauber dynamics of the random-field Ising model describes various ubiquitous phenomena such as avalanches, hysteresis, and related critical phenomena. Here, for a model on a random graph with a special initial condition, we derive exactly an evolution equation for an order parameter. Through a bifurcation analysis of the obtained equation, we reveal a new class of cooperative slow dynamics with the determination of critical exponents.Comment: 4 pages, 2 figure

    Phase Transition in a Self-repairing Random Network

    Full text link
    We consider a network, bonds of which are being sequentially removed; that is done at random, but conditioned on the system remaining connected (Self-Repairing Bond Percolation SRBP). This model is the simplest representative of a class of random systems for which forming of isolated clusters is forbidden. It qualitatively describes the process of fabrication of artificial porous materials and degradation of strained polymers. We find a phase transition at a finite concentration of bonds p=pcp=p_c, at which the backbone of the system vanishes; for all p<pcp<p_c the network is a dense fractal.Comment: 4 pages, 4 figure

    Coarse-Graining and Self-Dissimilarity of Complex Networks

    Full text link
    Can complex engineered and biological networks be coarse-grained into smaller and more understandable versions in which each node represents an entire pattern in the original network? To address this, we define coarse-graining units (CGU) as connectivity patterns which can serve as the nodes of a coarse-grained network, and present algorithms to detect them. We use this approach to systematically reverse-engineer electronic circuits, forming understandable high-level maps from incomprehensible transistor wiring: first, a coarse-grained version in which each node is a gate made of several transistors is established. Then, the coarse-grained network is itself coarse-grained, resulting in a high-level blueprint in which each node is a circuit-module made of multiple gates. We apply our approach also to a mammalian protein-signaling network, to find a simplified coarse-grained network with three main signaling channels that correspond to cross-interacting MAP-kinase cascades. We find that both biological and electronic networks are 'self-dissimilar', with different network motifs found at each level. The present approach can be used to simplify a wide variety of directed and nondirected, natural and designed networks.Comment: 11 pages, 11 figure

    New approach in the treatment of ophthalmic neovascular disorders: using fusion protein aflibercept

    Get PDF
    The aim of this review is to appraise the usage of a newly approved anti-vascular endothelial growth factor (anti-VEGF) fusion protein, aflibercept, in ocular neovascular disorders such as diabetic retinopathy and age-related macular degeneration. Aflibercept is a soluble fusion protein, which combines ligand-binding elements taken from the extracellular domains of VEGF receptors 1 and 2 fused to the Fc portion of IgG. This protein contains all human amino acid sequences, which minimizes the risk for immunogenicity in human patients. In this short review we investigate the available literature and data from clinical studies on the efficacy, pharmaceutical and pharmacological properties of aflibercept, and identify its possible advantages over commercially available anti-VEGF drugs.Biomedical Reviews 2014; 25: 59-65

    Long-lived stops in MSSM scenarios with a neutralino LSP

    Full text link
    This work investigates the possibility of a long-lived stop squark in supersymmetric models with the neutralino as the lightest supersymmetric particle (LSP). We study the implications of meta-stable stops on the sparticle mass spectra and the dark matter density. We find that in order to obtain a sufficiently long stop lifetime so as to be observable as a stable R-hadron at an LHC experiment, we need to fine tune the mass degeneracy between the stop and the LSP considerably. This increases the stop-neutralino coanihilation cross section, leaving the neutralino relic density lower than what is expected from the WMAP results for stop masses ~1.5 TeV/c^2. However, if such scenarios are realised in nature we demonstrate that the long-lived stops will be produced at the LHC and that stop-based R-hadrons with masses up to 1 TeV/c^2 can be detected after one year of running at design luminosity

    Minimum spanning trees on random networks

    Full text link
    We show that the geometry of minimum spanning trees (MST) on random graphs is universal. Due to this geometric universality, we are able to characterise the energy of MST using a scaling distribution (P(ϵ)P(\epsilon)) found using uniform disorder. We show that the MST energy for other disorder distributions is simply related to P(ϵ)P(\epsilon). We discuss the relationship to invasion percolation (IP), to the directed polymer in a random media (DPRM) and the implications for the broader issue of universality in disordered systems.Comment: 4 pages, 3 figure

    Measurement of pion, kaon and proton production in proton-proton collisions at s=7\sqrt{s}=7 TeV

    Full text link
    The measurement of primary π±\pi^{\pm}, K±^{\pm}, p and p\overline{p} production at mid-rapidity (y<|y| < 0.5) in proton-proton collisions at s=7\sqrt{s} = 7 TeV performed with ALICE (A Large Ion Collider Experiment) at the Large Hadron Collider (LHC) is reported. Particle identification is performed using the specific ionization energy loss and time-of-flight information, the ring-imaging Cherenkov technique and the kink-topology identification of weak decays of charged kaons. Transverse momentum spectra are measured from 0.1 up to 3 GeV/cc for pions, from 0.2 up to 6 GeV/cc for kaons and from 0.3 up to 6 GeV/cc for protons. The measured spectra and particle ratios are compared with QCD-inspired models, tuned to reproduce also the earlier measurements performed at the LHC. Furthermore, the integrated particle yields and ratios as well as the average transverse momenta are compared with results at lower collision energies.Comment: 33 pages, 19 captioned figures, 3 tables, authors from page 28, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/156
    corecore