3,170 research outputs found
A universal form of slow dynamics in zero-temperature random-field Ising model
The zero-temperature Glauber dynamics of the random-field Ising model
describes various ubiquitous phenomena such as avalanches, hysteresis, and
related critical phenomena. Here, for a model on a random graph with a special
initial condition, we derive exactly an evolution equation for an order
parameter. Through a bifurcation analysis of the obtained equation, we reveal a
new class of cooperative slow dynamics with the determination of critical
exponents.Comment: 4 pages, 2 figure
Phase Transition in a Self-repairing Random Network
We consider a network, bonds of which are being sequentially removed; that is
done at random, but conditioned on the system remaining connected
(Self-Repairing Bond Percolation SRBP). This model is the simplest
representative of a class of random systems for which forming of isolated
clusters is forbidden. It qualitatively describes the process of fabrication of
artificial porous materials and degradation of strained polymers. We find a
phase transition at a finite concentration of bonds , at which the
backbone of the system vanishes; for all the network is a dense
fractal.Comment: 4 pages, 4 figure
Coarse-Graining and Self-Dissimilarity of Complex Networks
Can complex engineered and biological networks be coarse-grained into smaller
and more understandable versions in which each node represents an entire
pattern in the original network? To address this, we define coarse-graining
units (CGU) as connectivity patterns which can serve as the nodes of a
coarse-grained network, and present algorithms to detect them. We use this
approach to systematically reverse-engineer electronic circuits, forming
understandable high-level maps from incomprehensible transistor wiring: first,
a coarse-grained version in which each node is a gate made of several
transistors is established. Then, the coarse-grained network is itself
coarse-grained, resulting in a high-level blueprint in which each node is a
circuit-module made of multiple gates. We apply our approach also to a
mammalian protein-signaling network, to find a simplified coarse-grained
network with three main signaling channels that correspond to cross-interacting
MAP-kinase cascades. We find that both biological and electronic networks are
'self-dissimilar', with different network motifs found at each level. The
present approach can be used to simplify a wide variety of directed and
nondirected, natural and designed networks.Comment: 11 pages, 11 figure
New approach in the treatment of ophthalmic neovascular disorders: using fusion protein aflibercept
The aim of this review is to appraise the usage of a newly approved anti-vascular endothelial growth factor (anti-VEGF) fusion protein, aflibercept, in ocular neovascular disorders such as diabetic retinopathy and age-related macular degeneration. Aflibercept is a soluble fusion protein, which combines ligand-binding elements taken from the extracellular domains of VEGF receptors 1 and 2 fused to the Fc portion of IgG. This protein contains all human amino acid sequences, which minimizes the risk for immunogenicity in human patients. In this short review we investigate the available literature and data from clinical studies on the efficacy, pharmaceutical and pharmacological properties of aflibercept, and identify its possible advantages over commercially available anti-VEGF drugs.Biomedical Reviews 2014; 25: 59-65
Recommended from our members
Inverse Regulation of Inflammation and Mitochondrial Function in Adipose Tissue Defines Extreme Insulin Sensitivity in Morbidly Obese Patients
Obesity is associated with insulin resistance, a major risk factor for type 2 diabetes and cardiovascular disease. However, not all obese individuals are insulin resistant, which confounds our understanding of the mechanistic link between these conditions. We conducted transcriptome analyses on 835 obese subjects with mean BMI of 48.8, on which we have previously reported genetic associations of gene expression. Here, we selected ∼320 nondiabetic (HbA1c <7.0) subjects and further stratified the cohort into insulin-resistant versus insulin-sensitive subgroups based on homeostasis model assessment–insulin resistance. An unsupervised informatics analysis revealed that immune response and inflammation-related genes were significantly downregulated in the omental adipose tissue of obese individuals with extreme insulin sensitivity and, to a much lesser extent, in subcutaneous adipose tissue. In contrast, genes related to β-oxidation and the citric acid cycle were relatively overexpressed in adipose of insulin-sensitive patients. These observations were verified by querying an independent cohort of our published dataset of 37 subjects whose subcutaneous adipose tissue was sampled before and after treatment with thiazolidinediones. Whereas the immune response and inflammation pathway genes were downregulated by thiazolidinedione treatment, β-oxidation and citric acid cycle genes were upregulated. This work highlights the critical role that omental adipose inflammatory pathways might play in the pathophysiology of insulin resistance, independent of body weight
Long-lived stops in MSSM scenarios with a neutralino LSP
This work investigates the possibility of a long-lived stop squark in
supersymmetric models with the neutralino as the lightest supersymmetric
particle (LSP). We study the implications of meta-stable stops on the sparticle
mass spectra and the dark matter density. We find that in order to obtain a
sufficiently long stop lifetime so as to be observable as a stable R-hadron at
an LHC experiment, we need to fine tune the mass degeneracy between the stop
and the LSP considerably. This increases the stop-neutralino coanihilation
cross section, leaving the neutralino relic density lower than what is expected
from the WMAP results for stop masses ~1.5 TeV/c^2. However, if such scenarios
are realised in nature we demonstrate that the long-lived stops will be
produced at the LHC and that stop-based R-hadrons with masses up to 1 TeV/c^2
can be detected after one year of running at design luminosity
Minimum spanning trees on random networks
We show that the geometry of minimum spanning trees (MST) on random graphs is
universal. Due to this geometric universality, we are able to characterise the
energy of MST using a scaling distribution () found using uniform
disorder. We show that the MST energy for other disorder distributions is
simply related to . We discuss the relationship to invasion
percolation (IP), to the directed polymer in a random media (DPRM) and the
implications for the broader issue of universality in disordered systems.Comment: 4 pages, 3 figure
Measurement of pion, kaon and proton production in proton-proton collisions at TeV
The measurement of primary , K, p and
production at mid-rapidity ( 0.5) in proton-proton collisions at
TeV performed with ALICE (A Large Ion Collider Experiment) at
the Large Hadron Collider (LHC) is reported. Particle identification is
performed using the specific ionization energy loss and time-of-flight
information, the ring-imaging Cherenkov technique and the kink-topology
identification of weak decays of charged kaons. Transverse momentum spectra are
measured from 0.1 up to 3 GeV/ for pions, from 0.2 up to 6 GeV/ for kaons
and from 0.3 up to 6 GeV/ for protons. The measured spectra and particle
ratios are compared with QCD-inspired models, tuned to reproduce also the
earlier measurements performed at the LHC. Furthermore, the integrated particle
yields and ratios as well as the average transverse momenta are compared with
results at lower collision energies.Comment: 33 pages, 19 captioned figures, 3 tables, authors from page 28,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/156
- …
