Can complex engineered and biological networks be coarse-grained into smaller
and more understandable versions in which each node represents an entire
pattern in the original network? To address this, we define coarse-graining
units (CGU) as connectivity patterns which can serve as the nodes of a
coarse-grained network, and present algorithms to detect them. We use this
approach to systematically reverse-engineer electronic circuits, forming
understandable high-level maps from incomprehensible transistor wiring: first,
a coarse-grained version in which each node is a gate made of several
transistors is established. Then, the coarse-grained network is itself
coarse-grained, resulting in a high-level blueprint in which each node is a
circuit-module made of multiple gates. We apply our approach also to a
mammalian protein-signaling network, to find a simplified coarse-grained
network with three main signaling channels that correspond to cross-interacting
MAP-kinase cascades. We find that both biological and electronic networks are
'self-dissimilar', with different network motifs found at each level. The
present approach can be used to simplify a wide variety of directed and
nondirected, natural and designed networks.Comment: 11 pages, 11 figure