31 research outputs found

    Hybrid intelligent framework for automated medical learning

    Get PDF
    This paper investigates the automated medical learning and proposes hybrid intelligent framework, called Hybrid Automated Medical Learning (HAML). The goal is the efficient combination of several intelligent components in order to automatically learn the medical data. Multi agents system is proposed by using distributed deep learning, and knowledge graph for learning medical data. The distributed deep learning is used for efficient learning of the different agents in the system, where the knowledge graph is used for dealing with heterogeneous medical data. To demonstrate the usefulness and accuracy of the HAML framework, intensive simulations on medical data were conducted. A wide range of experiments were conducted to verify the efficiency of the proposed system. Three case studies are discussed in this research, the first case study is related to process mining, and more precisely on the ability of HAML to detect relevant patterns from event medical data. The second case study is related to smart building, and the ability of HAML to recognize the different activities of the patients. The third one is related to medical image retrieval, and the ability of HAML to find the most relevant medical images according to the image query. The results show that the developed HAML achieves good performance compared to the most up-to-date medical learning models regarding both the computational and cost the quality of returned solutionspublishedVersio

    Game theory framework for MAC parameter optimization in energy-delay constrained sensor networks

    Get PDF
    Optimizing energy consumption and end-to-end (e2e) packet delay in energy-constrained, delay-sensitive wireless sensor networks is a conflicting multiobjective optimization problem. We investigate the problem from a game theory perspective, where the two optimization objectives are considered as game players. The cost model of each player is mapped through a generalized optimization framework onto protocol-specific MAC parameters. From the optimization framework, a game is first defined by the Nash bargaining solution (NBS) to assure energy consumption and e2e delay balancing. Secondy, the Kalai-Smorodinsky bargaining solution (KSBS) is used to find an equal proportion of gain between players. Both methods offer a bargaining solution to the duty-cycle MAC protocol under different axioms. As a result, given the two performance requirements (i.e., the maximum latency tolerated by the application and the initial energy budget of nodes), the proposed framework allows to set tunable system parameters to reach a fair equilibrium point that dually minimizes the system latency and energy consumption. For illustration, this formulation is applied to six state-of-the-art wireless sensor network (WSN) MAC protocols: B-MAC, X-MAC, RI-MAC, SMAC, DMAC, and LMAC. The article shows the effectiveness and scalability of such a framework in optimizing protocol parameters that achieve a fair energy-delay performance trade-off under the application requirements

    Commercial Technologies for Advanced Light Control in Smart Building Energy Management Systems: A Comparative Study

    No full text
    This work investigates the economic, social, and environmental impact of adopting different smart lighting architectures for home automation in two geographical and regulatory regions: Algiers, Algeria, and Stuttgart, Germany. Lighting consumes a considerable amount of energy, and devices for smart light-ing solutions are among the most purchased smart home devices. As commercial-ized solutions come with variant features, we empirically evaluate through this study the impact of each one of the energy-related features and provide insights on those that have higher energy saving contribution. The study started by investigating the state-of-the-art of commercialized ICT-based light control solutions, which allowed the extraction of the energy-related features. Based on the outcomes of this study, we generated simulation scenarios and selected evaluations metrics to evaluate the impact of dimming, daylight harvesting, scheduling, and motion detection. The simulation study has been conducted using \textit{EnergyPlus} simulation tool, which enables fine-grained realistic evaluation. The results show that adopting smart lighting technologies have a payback period of few years, and that the use of these technologies has positive economic and societal impacts, as well as on the environment by considerably reducing gas emissions. However, this positive contribution is highly sensitive to the geographical location, energy prices, and the occupancy profile

    Multiple Benefits through Smart Home Energy Management Solutions—A Simulation-Based Case Study of a Single-Family-House in Algeria and Germany

    No full text
    From both global and local perspectives, there are strong reasons to promote energy efficiency. These reasons have prompted leaders in the European Union (EU) and countries of the Middle East and North Africa (MENA) to adopt policies to move their citizenry toward more efficient energy consumption. Energy efficiency policy is typically framed at the national, or transnational level. Policy makers then aim to incentivize microeconomic actors to align their decisions with macroeconomic policy. We suggest another path towards greater energy efficiency: Highlighting individual benefits at microeconomic level. By simulating lighting, heating and cooling operations in a model single-family home equipped with modest automation, we show that individual actors can be led to pursue energy efficiency out of enlightened self-interest. We apply simple-to-use, easily, scalable impact indicators that can be made available to homeowners and serve as intrinsic economic, environmental and social motivators for pursuing energy efficiency. The indicators reveal tangible homeowner benefits realizable under both the market-based pricing structure for energy in Germany and the state-subsidized pricing structure in Algeria. Benefits accrue under both the continental climate regime of Germany and the Mediterranean regime of Algeria, notably in the case that cooling energy needs are considered. Our findings show that smart home technology provides an attractive path for advancing energy efficiency goals. The indicators we assemble can help policy makers both to promote tangible benefits of energy efficiency to individual homeowners, and to identify those investments of public funds that best support individual pursuit of national and transnational energy goals

    Selfish MAC Layer Misbehavior Detection Model for the IEEE 802.11-Based Wireless Mesh Networks

    No full text

    Power-Aware Architecture to Combat Intelligent Adaptive Attacks in Ad-Hoc Wireless Networks

    No full text
    corecore