3,381 research outputs found
Hexabromocyclododecane and hexachlorocyclohexane: How lessons learnt have led to improved regulation
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2014 Taylor & Francis.The use of chemicals by society has many benefits but contamination of the environment is an unintended consequence. One example is the organochlorine compound hexachlorocyclohexane (HCH). During the 1980s, when HCH was banned in many countries, the brominated flame retardant, hexabromocyclododecane (HBCD), found increasing use. The persistent, bioaccumulative, and toxic characteristics of HBCD are, 30 years later, likely to warrant global action on production and use under the Stockholm Convention on persistent organic pollutants. Historical lessons have taught us that we need to control the use of chemicals and programs are in place worldwide in an attempt to do so.Tertiary Education Trust Fund, Nigeri
Surface induced magnetization reversal of MnP nanoclusters embedded in GaP
We investigate the quasi-static magnetic behavior of ensembles of
non-interacting ferromagnetic nanoparticles consisting of MnP nanoclusters
embedded in GaP(001) epilayers grown at 600, 650 and 700{\deg}C. We use a
phenomenological model, in which surface effects are included, to reproduce the
experimental hysteresis curves measured as a function of temperature (120-260
K) and direction of the applied field. The slope of the hysteresis curve during
magnetization reversal is determined by the MnP nanoclusters size distribution,
which is a function of the growth temperature. Our results show that the
coercive field is very sensitive to the strength of the surface anisotropy,
which reduces the energy barrier between the two states of opposite
magnetization. Notably, this reduction in the energy barrier increases by a
factor of 3 as the sample temperature is lowered from 260 to 120 K.Comment: 7 pages, 5 figure
Exploring X-ray Binary Populations in Compact Group Galaxies with
We obtain total galaxy X-ray luminosities, , originating from
individually detected point sources in a sample of 47 galaxies in 15 compact
groups of galaxies (CGs). For the great majority of our galaxies, we find that
the detected point sources most likely are local to their associated galaxy,
and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic
nuclei (AGNs). For spiral and irregular galaxies, we find that, after
accounting for AGNs and nuclear sources, most CG galaxies are either within the
scatter of the Mineo et al. (2012) - star formation rate
(SFR) correlation or have higher than predicted by this correlation for
their SFR. We discuss how these "excesses" may be due to low metallicities and
high interaction levels. For elliptical and S0 galaxies, after accounting for
AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et
al. (2011) - stellar mass correlation for low-mass XRBs, with larger
scatter, likely due to residual effects such as AGN activity or hot gas.
Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB
luminosity functions to estimate the probability that stochastic effects can
lead to such extreme values. We find that, although stochastic effects do
not in general appear to be important, for some galaxies there is a significant
probability that high values can be observed due to strong XRB
variability.Comment: Accepted by Ap
Existence of global strong solutions to a beam-fluid interaction system
We study an unsteady non linear fluid-structure interaction problem which is
a simplified model to describe blood flow through viscoleastic arteries. We
consider a Newtonian incompressible two-dimensional flow described by the
Navier-Stokes equations set in an unknown domain depending on the displacement
of a structure, which itself satisfies a linear viscoelastic beam equation. The
fluid and the structure are fully coupled via interface conditions prescribing
the continuity of the velocities at the fluid-structure interface and the
action-reaction principle. We prove that strong solutions to this problem are
global-in-time. We obtain in particular that contact between the viscoleastic
wall and the bottom of the fluid cavity does not occur in finite time. To our
knowledge, this is the first occurrence of a no-contact result, but also of
existence of strong solutions globally in time, in the frame of interactions
between a viscous fluid and a deformable structure
Quantification of light attenuation in optically cleared mouse brains
Optical clearing, in combination with recently developed optical imaging techniques, enables visualization and acquisition of high-resolution, three-dimensional images of biological structures deep within the tissue. Many different approaches can be used to reduce light absorption and scattering within the tissue, but there is a paucity of research on the quantification of clearing efficacy. With the use of a custom-made spectroscopy system, we developed a way to quantify the quality of clearing in biological tissue and applied it to the mouse brain. Three clearing techniques were compared: BABB (1:2 mixture of benzyl alcohol and benzyl benzoate, also known as Murray’s clear), pBABB (peroxide BABB, a modification of BABB which includes the use of hydrogen peroxide), and passive CLARITY. We found that BABB and pBABB produced the highest degree of optical clearing. Furthermore, the approach allows regional measurement of light attenuation to be performed, and our results show that light is most attenuated in regions with high lipid content. We provide a way to choose between the multiple clearing protocols available, and it could prove useful for evaluating images that are acquired with cleared tissues
NASA follow-on to the Bangladesh Agro-Climatic Environmental Monitoring Project
The NASA responsibility and activities for the follow-on to the original Agro-Climatic Environmental Monitoring Project (ACEMP) which was completed during 1987 is described. Five training sessions which comprise the NASA ACEMP follow-on are: Agrometeorology, Meteorology of Severe Storms Using GEMPAK, Satellite Oceanography, Hydrology, and Meteorology with TOVS. The objective of the follow-on is to train Bangladesh Government staff in the use of satellite data for remote sensing applications. This activity also encourages the scientific connection between NASA/Goddard Space Flight Center and The Bangladesh Space and Remote Sensing Organization (SPARRSO)
Some Like It Hot: Linking Diffuse X-ray Luminosity, Baryonic Mass, and Star Formation Rate in Compact Groups of Galaxies
We present an analysis of the diffuse X-ray emission in 19 compact groups of
galaxies (CGs) observed with Chandra. The hottest, most X-ray luminous CGs
agree well with the galaxy cluster X-ray scaling relations in and
, even in CGs where the hot gas is associated with only the
brightest galaxy. Using Spitzer photometry, we compute stellar masses and
classify HCGs 19, 22, 40, and 42 and RSCGs 32, 44, and 86 as fossil groups
using a new definition for fossil systems that includes a broader range of
masses. We find that CGs with total stellar and HI masses
M are often X-ray luminous, while lower-mass CGs only sometimes exhibit
faint, localized X-ray emission. Additionally, we compare the diffuse X-ray
luminosity against both the total UV and 24 m star formation rates of each
CG and optical colors of the most massive galaxy in each of the CGs. The most
X-ray luminous CGs have the lowest star formation rates, likely because there
is no cold gas available for star formation, either because the majority of the
baryons in these CGs are in stars or the X-ray halo, or due to gas stripping
from the galaxies in CGs with hot halos. Finally, the optical colors that trace
recent star formation histories of the most massive group galaxies do not
correlate with the X-ray luminosities of the CGs, indicating that perhaps the
current state of the X-ray halos is independent of the recent history of
stellar mass assembly in the most massive galaxies.Comment: 20 pages, 7 figures, accepted for publication in Ap
A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body
The issue of the inviscid limit for the incompressible Navier-Stokes
equations when a no-slip condition is prescribed on the boundary is a famous
open problem. A result by Tosio Kato says that convergence to the Euler
equations holds true in the energy space if and only if the energy dissipation
rate of the viscous flow in a boundary layer of width proportional to the
viscosity vanishes. Of course, if one considers the motion of a solid body in
an incompressible fluid, with a no-slip condition at the interface, the issue
of the inviscid limit is as least as difficult. However it is not clear if the
additional difficulties linked to the body's dynamic make this issue more
difficult or not. In this paper we consider the motion of a rigid body in an
incompressible fluid occupying the complementary set in the space and we prove
that a Kato type condition implies the convergence of the fluid velocity and of
the body velocity as well, what seems to indicate that an answer in the case of
a fixed boundary could also bring an answer to the case where there is a moving
body in the fluid
- …
