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Abstract 

The use of chemicals by society has many benefits but contamination of the environment is 

an unintended consequence. One example is the organochlorine compound 

hexachlorocyclohexane. During the 1980s, when hexachlorocyclohexane was banned in 

many countries, the brominated flame retardant, hexabromocyclododecane, found 

increasing use. The persistent, bioaccumulative and toxic characteristics of 

hexabromocyclododecane  are, 30 years later, likely to warrant global action on production 

and use under the Stockholm Convention on POPs. Historical lessons have taught us that we 

need to control the use of chemicals and programmes are in place worldwide in an attempt 

to do so. 
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1.0. Introduction 

Over the years, the growth of the chemical industry and the manufacture and use of a 

number of chemical substances have resulted in global contamination of the environment 

with some chemical substances. In particular, those classified as persistent organic 

pollutants (POPs) have attracted attention due to a growing body of scientific evidence of 

their PBT properties and the potential for long-range environmental transport (UNEP, 2009). 

Among POPs are the synthetic organohalogens, hexachlorocyclohexane (HCH) and 

hexabromocyclododecane (HBCD). The manufacture and use of HCH began much earlier 

than that of HBCD (Breivik et al., 1999; Alaee et al., 2003). For several years, the 

environmental fate and toxicological effects of HCH were extensively studied and known 

before the manufacture and use of HBCD (ATSDR, 2005; EC, 2008). 

With the molecular formula C6H6Cl6, HCH is an organochlorine first synthesized in 1825 by 

photochlorination of benzene, and was then known as benzene hexachloride (BHC) (CEC, 

2006). Technical HCH is a mixture of five isomers: α (alpha)-HCH (55-80%), β (beta)-HCH (5-

14%), γ (gamma)-HCH (8-15%), δ (delta)-HCH (2-16%) and ε (epsilon)-HCH (3-5%) (Vijgen et 

al., 2011). The proportion of the different isomers in technical products varied due to 

differences in production processes. The most environmentally significant isomers are the α, 

β and γ isomers. The insecticidal property of HCH virtually exhibited by the γ isomer was 

discovered in 1942. The γ-HCH was then named lindane after Van Linden, the discoverer of 

the α and γ isomers (CEC, 2006). With the exception of γ-HCH, the other isomers of HCH 

became residues of the production process. Technical HCH was used in the control of insect 

pests until the late 1970s when it was replaced by lindane (≥99% γ-HCH) (Breivik et al., 

1999). The production of 1 tonne of lindane generated approximately 6-10 tonnes of α- and 
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β-HCH and as a result of the waste isomers generated, the production and regulation of 

lindane was a global problem for many years (IHPA, 2006). 

Lindane and technical HCH have been used in the treatment of fruits, food crops, 

ornamental plants, seeds, forestry products, soil, livestock and pets to eradicate pests such 

as insects, ticks and mites (Li, 1999). The insecticide has also been used as a pharmaceutical 

formulation in shampoo, lotions or creams for treatment of head lice and scabies (mite 

infection) in humans (WHO, 1991). It is estimated that from 1950 to 2000, about 600,000 

tonnes of lindane was used globally; on an annual basis this was about 12,000 tonnes per 

annum over a period of 50 years. The estimated use in agriculture in Europe, Asia, Africa 

and Oceania were 287,160, 73,200, 63,570, 28,540 and 1,030 tonnes, respectively (IHPA, 

2006). Breivik et al. (1999) reported that 382,000 tonnes of technical HCH and 81,000 

tonnes of lindane were used in Europe from 1970 to 1996. In addition, they observed an 

estimated cumulative usage of 259,000 tonnes of α-HCH, 135,000 tonnes of γ-HCH and 

20,000 tonnes of β-HCH. 

Release of HCH to the environment involves several pathways: emissions from 

manufacturing sites; volatilization to the atmosphere during application in agriculture; 

atmospheric deposition; leaching in soil and release from stockpiles of disposed residual 

HCH isomers (UNEP, 2006). Exposure of biota (including humans) to HCH is mainly through 

intake of contaminated food and water. In addition, human exposure to lindane may be by 

direct contact during its application for pharmaceutical and agricultural purposes (CEC, 

2006; UNEP, 2006). Because of the adverse effects of lindane on the environment and 

human health, by 2006, the use of lindane had been banned in 52 countries, and restricted 

in 33 countries (CEC, 2006). The proposal to list lindane and α- and β-HCH on Annex A 
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(elimination) of Stockholm Convention on POPs was made by Mexico in 2005 and 2006, 

respectively (Vijgen et al., 2011). In 2009, they were finally listed on  Annex A of Stockholm 

Convention on POPs. This implied a global ban on the production and use of lindane, and α- 

and β-HCH. However, a specific exemption (5 years limit effective 2009) allows the use of 

lindane as a human health pharmaceutical for the control of head lice and scabies as second 

line treatment (UNEP, 2009). 

A halogenated cyclic alkane, similar in structure to HCH (Fig. 1), HBCD has a molecular 

formula of C12H18Br6, and is an additive brominated flame retardant (BFR) produced by 

bromination of 1,5,9-cyclododecatriene (Heeb et al., 2005). As a flame retardant, it is 

incorporated into a wide range of consumer products to resist ignition of combustion and 

prevent or reduce flammability, particularly in materials that are susceptible to combustion 

(BSEF, 2009). Law et al. (2005) described 16 possible stereoisomers of HBCD comprising 6 

pairs of enantiomers and 4 mesoforms. However, technical HBCD is a mixture of 3 

diastereomers: α-HBCD (10-13%), β-HBCD (1-12%) and γ-HBCD (75-89%) (Covaci et al., 

2006). Like HCH, the complex stereochemistry of HBCD and the differential environmental 

behaviour and fate of its isomers have made chemical analysis and regulation of HBCD 

difficult (Law et al., 2005; Janak et al., 2005). The production of HBCD for use as a BFR in 

polystyrene materials commenced in the 1980s, though the chemical had been available on 

the market since the 1960s (EC, 2008). HCH had been in use for at least, 2 decades before 

the global introduction of HBCD. HBCD is mainly used in expanded polystyrene (EPS), 

extruded polystyrene (XPS) and backcoating of textiles for upholstered furniture, upholstery 

seating in transportation vehicles, draperies, wall coverings, mattress ticking and interior 

textiles such as car cushions and roller blinds (Swedish Chemicals Agency, 2008). 



5 
 

Polystyrenes are principally used for thermal insulation boards in construction and building 

industries (Darnerud, 2003). In Europe in particular, HBCD is also used in high impact 

polystyrene (HIPS) for electrical and electronic equipment such as audio-visual equipment 

cabinets, wire and cable distribution boxes and refrigerator lining (ECHA, 2009). Deng et al. 

(2009) observed that the estimated total market demand for HBCD in 2001 globally was 

over 16,700 tonnes, with 2,800 tonnes from USA, 9,500 tonnes from Europe, 3,900 tonnes 

from Asia and 500 tonnes from the rest of the world. In 2002 and 2003, the global demands 

were 21,447 and 21,951 tonnes, respectively (UNEP, 2010b). The increasing global demand 

for HBCD has resulted in an annual production of almost twice that historically reached for 

HCH. 

 

 

Figure 1. The structures of the two halogenated cyclic alkanes, HCH and HBCD 

 

Release of HBCD to the environment may arise from emissions and discharge of HBCD from 

manufacturing sites (Covaci et al., 2006), and the use and disposal of its products (Wu et al., 

2011). HBCD is an additive flame retardant; it is not chemically bound to the material it 
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protects unlike reactive flame retardants. Therefore, it is predisposed to high leaching and 

release to the environment from its products in use or after disposal (USEPA, 2010). 

Evidence of the distribution of HBCD in environmental media such as air, soil, sediments, 

surface water and sewage sludge, and biota (including humans) have been reported (ECHA, 

2008; Environment Canada, 2011). Because of its volatility, atmospheric transport is also an 

important pathway for transport of HBCD within the environment (de Wit et al., 2010). In 

the European Union, due to the PBT properties of HBCD, HBCD has been identified as a 

substance of very high concern (SVHC) within the Registration, Evaluation, Authorization 

and Restriction of Chemicals (REACH) framework (ECHA, 2008). In the USA, HBCD is also 

considered to be of high concern based on its PBT properties, high toxicity to aquatic 

organisms and occurrence in remote regions of the world (UNEP, 2010a). 

HBCD is among new POPs being considered for global elimination. It was nominated by 

Norway in 2008 for listing in the annexes of Stockholm Convention on POPs. It has met 

criteria for inclusion in Annex D of the Convention based on the screening criteria of PBT 

properties and the potential for long-range environmental transport, and completed the 

Annex E assessment (UNEP, 2010a). The Persistent Organic Pollutants Review Committee 

(POPRC), a subsidiary body of Stockholm Convention mandated to assess a given proposal 

by a Party for listing of a chemical as a POP in Annex(es) A, B (restriction) and/or C 

(unintentional production), at its sixth meeting held from 11-15 October 2010 in Geneva, 

Switzerland, considered and adopted the risk profile of HBCD. It was concluded that HBCD 

should proceed to Annex F (management evaluation). At its seventh meeting held from 10 -

14 October 2011 in Geneva, the Committee considered a draft risk management plan for 

possible control measures and socio-economic considerations and recommended that HBCD 
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should be listed in Annex A as a control measure. However, the recommendation is yet to 

be adopted by the Convention (UNEP, 2011). 

This paper will comparatively review the PBT properties and the potential for long-range 

environmental transport of HCH and HBCD, and evaluate where the consequences of using 

HBCD could have been foreseen as a result the early warnings from HCH. 

 

2.0. Persistence 

Characteristically, HCH and HBCD are persistent and resistant to degradation. Though 

degradation by microorganisms may result in the slow removal of HCH from water, 

photolysis and hydrolysis are not considered to be significant pathways for degradation of 

HCH isomers (CEC, 2006; Addison et al., 2009; Hu et al., 2010). Once released to the 

environment, HCH partitions into the air, water, sediments and soil, and accumulates in 

biota. Technical HCH is no longer used as an insecticide in most parts of the world, but its 

isomers are still reported to occur in surface waters, sediments, soil and biota in countries 

where it has long been banned because of its persistence in the environment (Zhao et al., 

2009; Hu et al., 2010; Vijgen et al., 2011). Among banned organochlorines, Brun et al. (2008) 

reported α- and γ-HCH among the most frequently detected chemical substances in wet-

precipitation across Atlantic Canada. 

Chen et al. (1984) reported half-lives of 91 hours (3.79 days), 152 hours (6.33 days) and 104 

hours (4.33 days) for α-HCH, β-HCH and γ-HCH, respectively, in the air. Hydrolytic half-lives 

of 0.8 year (292 days) (pH 8.0, 200C) and 26 years (pH 7.8, 50C) were estimated for α-HCH by 

Ngabe et al. (1993). In addition, Harner et al. (1999) estimated a half-life of 63 years for α-
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HCH in the Arctic Ocean. In natural freshwaters such as rivers and lakes, the estimated half-

lives for γ-HCH/lindane range from 3 to 300 days (Mackay et al., 1997). In seawater (pH 8.0, 

200C), a half-life of 1.1 years is estimated while 110 years is estimated in the Arctic Ocean 

(pH 8.0, 00C) for lindane (UNEP, 2006). In soils, half-lives of 55 days (Singh et al., 1991) and 

161 days (Doelman et al., 1990) for α-HCH, 100 and 184 days for β-HCH (Singh et al., 1991), 

and 88 to 1146 days (aerobic conditions) and 12 to 174 days (anaerobic conditions) for γ-

HCH (Slooff and Matthijsen, 1988; IPCS, 1991), have been reported. Information on 

degradation half-lives of HCH in sediments is limited. However, in aquatic sediments, half-

lives of 90 days (WWFC, 1999), and 0.9, 12.6 and 1.26 years for α-, β- and γ-HCH, 

respectively, in the Arctic (Helm et al., 2002) have been estimated. In environmental media, 

β-HCH does not undergo degradation easily. Compared to other HCH isomers, it is detected 

most commonly in environmental media due to its lower water solubility (higher kow) and 

greater chemical stability (Bhatt et al., 2009). HCH persists in biota. Data on the occurrence 

of HCH in biota are usually in the form of concentrations rather than biological half-lives, 

although in humans, an estimated half-life of 7 to 10 years for β-HCH,  which is the 

predominant isomer in mammals, has been reported (Zou and Matsumura, 2003). 

HBCD also has the propensity for persistence. Like HCH, half-lives in air and water greater 

than the regulatory thresholds of >2 and >60 days (UNEP, 2001), respectively, have been 

reported (Table 1). However, there appears to be a lack of experimental data on the 

degradation half-life of HBCD in both freshwater and marine water. The range of values (60-

130 days) stated in Table 1 for HBCD are rather estimates derived from models. In studies 

on the biodegradation of HBCD in aquatic sediments, half-lives of 210, 130 and 190 days 

(aerobic) and 210, 80 and 125 days (anaerobic) for α-, β- and γ-HBCD, respectively, have 
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been reported. However, using temperature of 12oC as benchmark, the half-life of HBCD in 

sediments is estimated to be 125-191 days (EC, 2008). Compared to β- and γ-HBCD, α-HBCD 

is resistant to reductive dehalogenation under anaerobic condition in sediments (EC, 2008). 

Data on degradation half-lives of HBCD in soils are limited. Davis et al. (2005) determined 

half-lives of 63 and 6.9 days in aerobic and anaerobic soils, respectively, for HBCD. However, 

in the study, degradation products were not reported, and only the fate of γ-HBCD was 

determined. On the basis of empirical data primarily, the half-life of HBCD in soil is ≥182 

days (Environment Canada, 2011).  

Table 1. A comparison of the persistence of HCH and HBCD in environmental 
media. 

 

Criterion Regulatory 

threshold 

(UNEP, 2001) 

HCH HBCD 

Half-life in air >2 days 3.7 to 6.33 (Chen et 

al., 1984) 

0.4 to 5.2 (Marvin et al., 

2011) 

Half-life in water  >60 days 3 to 300 days 

(Mackay et al., 1997) 

60 to 130 days (Marvin et 

al., 2011) 

Half-life in aquatic 

sediments  

>180 days 90 days (WWFC, 

1999) 

0.9 to 12.6 years 

(Helm et al., 2002) 

125-191 days (EC, 2008) 

Half-life in soil  >180 days <180-1146 (IPCS, 

1991) 

6.9 to 63 days (Davis et al., 

2005) 

≥182 days (Environment 

Canada, 2011) 

Half-life in biota 

(days/years) 

none 7 to 10 years 

(humans) (Zou and 

Matsumura, 2003) 

23 to 219 days (humans) 

(Schecter et al., 2012) 

1 to 17 days (mice) 

(Schecter et al., 2012) 

53 to 136 days (fish) (Janak 

et al., 2005) 
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When released to the environment, HBCD isomers will adsorb onto solid particles of 

sediments and soil (Janak et al., 2005). Though there is a predominance (>90%) of γ-HCBD in 

the environment compared to α- and β-HBCD, α-HBCD often has the highest prevalence in 

biota, followed by β-HBCD (Birnbaum and Staskal, 2004). This has been attributed to 

bioisomerization of the diastereomers and differences in the metabolizing capacity of 

organisms, particularly fish (Law et al., 2004; Janak et al., 2005). Half-lives of 136 and 53 

days for α- and β-HBCD, respectively, in Oncorhynchus mykiss (rainbow trout) have been 

reported (Janak et al., 2005).  

The abundance of HBCD in environmental media in remote locations such as the Arctic 

without demonstrable existing sources of exposure, and its trophic transfer in food webs 

provide evidence of persistence of HBCD. Concentrations of HBCD measured in dated 

sediment core samples indicate widespread occurrence and also provide evidence of the 

persistence of HBCD in the environment (UNEP, 2007a). Generally, HCH is more persistent in 

environmental media than HBCD (Table 1), however isomers of both HCH and, HBCD exhibit 

differences in their persistence in environmental media. 

 

3.0. Bioaccumulation 

Octanol-water partition coefficient (KOW) and bioconcentration factor (BCF) are used to 

assess the potential for a chemical to bioaccumulate. Log Kow values of 3.8, 3.78 and 3.72 for 

α-, β- and γ-HCH, respectively (ATSDR, 2005), indicate a potential for bioaccumulation. A 

wide range of BCFs for HCH have been reported in several studies. Oliver and Niimi (1985) 

reported BCF of 1100 – 2800 in fish. In invertebrates, BCFs ranging from 60 – 2,750 have 
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been estimated (UNEP, 2007b). Due to its lipophilicity, HCH accumulates in food chains. It 

has been reported to accumulate rapidly in invertebrates, fish, birds and mammals (CEC, 

2006). In biota, particularly mammals, the variations observed in the isomeric composition 

of HCH may be due to differences in sources and time of exposure, isomeric uptake, 

metabolism and adiposity of species (Willett et al., 1998). Generally, β-HCH being the most 

persistent and bioaccumulative isomer, may exhibit highest prevalence among HCH isomers 

detected in mammalian tissues (Solomon and Weiss, 2002; Liu and Macdonald, 2005). This 

is attributable to the greater resistance to metabolism and the much longer half-life of β-

HCH than other HCH isomers in adipose tissues of mammals (Liu and Macdonald, 2005). Zou 

and Matsumura (2003) reported the accumulation of β-HCH in the adipose and breast 

tissues of humans. 

HBCD also has the potential for bioaccumulation like HCH. However, the log KOW values of 

HBCD are higher than those of HCH. For technical HBCD, α-HBCD, β-HBCD and γ-HBCD, the 

estimated log Kow values are 5.62, 5.07, 5.12 and 5.47, respectively (ECHA, 2008). HBCD has 

low water solubility of 66 μg/l (Swedish Chemicals Agency, 2008). Because of its 

hydrophobicity and lipophilicity, it exhibits partitioning into adipose tissues in biota, 

followed by accumulation, characteristic of many POPs (de Wit. 2002; Law et al., 2003). The 

accumulation of HBCD in different organisms such as invertebrates, fish, birds and mammals 

(including humans), and its biomagnification in food chains have been reported (Tomy et al., 

2004; Law et al., 2006; Covaci et al ., 2006). BCFs of 18,100 in Pimephales promelas (fathead 

minnows) (Veith et al., 1979) and 19,200 in O. mykiss (Drottar et al., 2001) have been 

measured. Stereoisomer-specific bioaccumulation has been observed in HBCD. Like HCH, 

HBCD seems to undergo stereoselective processes such as biotransformation and 
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bioisomerization in the environment, resulting in relative enrichment of different 

stereoisomers (Law et al., 2005; Janak et al., 2005; Heeb et al., 2008).This has been 

observed in the preferential accumulation of α-HBCD in relation to the much dominant γ-

HBCD in the technical HBCD mixture (Janak et al., 2005). Differences in the water solubility 

of HBCD stereoisomers (48.8, 14.7 and 2.1 μg/l for α-, β- and γ-HBCD, respectively) may also 

be responsible for differences in the metabolism and bioaccumulation of the stereoisomers 

(Hunziker et al., 2004). The regulatory criteria for bioaccumulation assessment based on Kow 

and BCF include United Nations Environment Programme (UNEP) (Stockholm Convention on 

POPs), log Kow≥5 and BCF≥5000; European Union (REACH), BCFs ≥2000 (bioaccumulative) 

and ≥5000 (very bioaccumulative); United States (Toxic Substances Control Act), BCFs of 

1000-5000 (bioaccumulative) and ≥5000 (very bioaccumulative), and Environment Canada 

(Canadian Environment Protection Act), log Kow≥5 and BCF≥5000 (Arnot and Gobas, 2006). 

On the basis of these criteria, HBCD is much more bioaccumulative than HCH. 

 

4.0. Toxicity 

Reported adverse effects of HCH (Table 2) in laboratory animals and humans include 

carcinogenicity, genotoxicity, neurotoxicity, developmental toxicity, endocrine disruption, 

reproductive disorders, haematological alterations and immunosuppression (ATSDR, 2005; 

UNEP, 2006). Mathur et al. (2002) reported β-HCH levels to be significantly higher in breast 

cancer patients, 31-50 years of age in relation to non-cancer patients. β-HCH is a risk factor 

for the progression of breast cancer cells to advanced state of malignancy (Zou and 

Matsumura, 2003). Studies by Khan et al. (2010) indicated a positive significant association 

between sperm count and the level of α- and β-HCH in infertile human males as a result of Y 
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chromosome microdeletions by the HCH isomers. HCH is mutagenic, and can cause 

spermatogenic failure in humans. Neurological effects such as seizures, convulsion and 

coma in humans, and immunosuppression and suppressed antibody responses in laboratory 

animals arising from exposure to lindane have been observed (WHO/Europe, 2003). 

Prenatal exposure to β-HCH has been associated with alteration in thyroid hormone levels 

and possible adverse brain development in humans (Alvarez-Pedrerol et al., 2008). Studies 

on rats and rabbits have indicated reproductive disorders such as reduced ovulation, 

reduction in the number of testicular spermatids and epididymal sperms, degeneration of 

seminiferous tubules and disruption of spermatogenesis as a result of exposure to lindane. 

Haematological changes such as leukocytosis, granulocytosis, eosinophilia, 

thrombocytopenia and leukopenia have also been observed in humans following chronic 

exposure to lindane (UNEP, 2006). Acute exposure to lindane in humans may cause adverse 

effects ranging from skin irritation to dizziness, diarrhoea, vomiting, headache nausea 

convulsion and death (CEC, 2006). 

 

The ecotoxicity of HCH has been extensively studied. Lindane is toxic to aquatic organisms. 

Schafer et al. (1994) reported lindane’s inhibiton of growth in the freshwater algae, 

Chlamydomonas reinhardi and Scenedesmus subspicatus at 72h EC50  of 4.0 mg/l and 72h 

EC50 of 3.2 mg/l, respectively.The LC50 (median lethal concentration) for aquatic 

invertebrates and fish ranges from 10-520 μg/l and 1.7-131 μg/l, respectively (UNEP, 2006). 

Studies on the chronic toxicity of lindane showed reduction in the growth of freshwater fish 

larvae at a NOAEC (no observed adverse effect concentration) of 2.9 μg/l, and decline in 

reproduction in aquatic invertebrates at NOAEC of 54 μg/l (UNEP, 2006). In aquatic birds 
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and mammals generally, chronic exposure to lindane has resulted in reduced rate of growth 

and survival, decrease in body weight and egg production and endocrine disruption as 

important endpoints (CEC, 2006). In the terrestrial environment, Pereira et al. (2010) 

reported on the phytotoxicity of HCH in relation to the germination and growth responses 

of different plant species. 

Unlike HCH, information on the relative toxicity of the different isomers of HBCD in humans 

and wildlife is virtually lacking. However, extrapolations of toxicological tests on technical 

HBCD mixture in mammals strongly indicate that HBCD has the potential to cause adverse 

effects in humans (Table 2). These include endocrine disruption, particularly of the thyroid-

hormone system (Ibhazehiebo et al., 2011); neurotoxicity (learning and memory defects) 

(Reistad et al., 2006; Eriksson et al., 2006); reproductive disorders such as inhibition of 

oogenesis (Darnerud, 2003), and adverse effect on liver weight and activity (Germer et al., 

2006). The possible role of HBCD in carcinogenicity is not known. The limited data indicate 

that with the exception of endocrine disruption in mammalian cell cultures, where effects 

occurred at concentrations of mg/l rather than µg/l, risks posed by HBCD to mammals are 

not greater than those of HCH. 

Ecotoxicity studies (Table 2 and Figure 2) have shown that HBCD like HCH can potentially 

produce adverse effects in aquatic organisms, particularly algae, invertebrates, fish, birds 

and mammals, and terrestrial organisms at environmentally relevant concentrations 

(Darnerud, 2003; Birbaum and Staskal, 2004). Generally, laboratory studies on the toxicity of 

HBCD to aquatic organisms indicate endpoints such as inhibition of survival, growth, 

development and reproduction, endocrine disruption, histopathological changes, oxidative 



15 
 

Table 2. Comparative toxicity of HCH and HBCD. A comparison of values for 

ecotoxicity is shown in Figure 2. 

 

Toxicity HCH HBCD 

Mammalian 
toxicity 

Carcinogenicity β-HCH 29 µg/l in vitro (Zou 
and Matsumura, 2003) 

No data 

 Genotoxicity α-HCH 130 µg/l; β HCH 300 
µg/l in vitro (Khan et al., 2010) 

No data 

 Neurotoxicity α-HCH at 23.4 mg/kg/day in 
rats (WHO Europe, 2003) 

13.5 mg/kg/day in mice 
(Eriksson et al., 2006) 

 Reproductive 
toxicity 

γ-HCH 6mg/kg/day in male 
rats (ATSDR, 2005) 

2,500 mg/kg/day in rats 
(Darnerud, 2003) 

 Developmental 
toxicity 

γ-HCH 13.1 mg/kg/day in rats 
(ATSDR, 2005) 

Has the potential (UNEP, 
2010b) 

 Immunotoxicity γ-HCH 6- 25 mg/kg/day in rats 
(UNEP, 2006) 

No data 

 Endocrine 
disruption 

β- and γ-HCH (UNEP, 2006; 
Alvarez-Pedrerol et al., 2008) 

Has the potential (UNEP, 
2010b) 

  Technical HCH 3 to 11 mg/l in 
vitro (mammalian cells) 
(Tiemann, 2008) 

α-HBCD 0.064 µg/l in vitro 
(mammalian cells) 
(Ibhazehiebo et al., 2011) 

Ecotoxicity Acute toxicity Highly toxic to freshwater fish 
(UNEP, 2006) 

Highly toxic to aquatic 
invertebrates (UNEP, 2006) 

Moderately toxic to birds and 
mammals (CEC, 2006) 

Highly toxic to algae (IPCS, 
1992; Schafer et al.,1994) 

 

Toxic to freshwater fish 
embryos (Deng et al., 2009)  

Toxic to aquatic invertebrates 
(ECHA, 2008) 

No data on acute toxicity to 
birds and mammals 

Highly toxic to algae 
(Desjardins et al., 2005) 

 Chronic toxicity Aquatic biota (UNEP, 2006) Aquatic biota (EC, 2008) 

 Inhibition of 
growth and 
survival 

In daphnids and fish 
(Ferrando et al., 1995; Gorge 

and Nagel, 1990) 

In daphnids and fish (Drottar 
and Kruegar, 1998; Drottar et 
al., 2001) 

 Inhibition of 
reproduction 

In aquatic invertebrates, birds 
and mammals (UNEP, 2006) 

In daphnids, fish, birds, 
mammals and earthworm 
(UNEP, 2010b) 

 Terrestrial 
phytotoxicity 

Technical HCH 1,250 mg/kg in 
soil (Pereira et al., 2010) 

No (UNEP, 2010b) 

 Endocrine 
disruption 

Technical HCH 1 to 10 mg/l in 
fish (Singh and Canario, 2004) 

 

In fish exposed to 5 µg/l 
(Palace et al., 2010) 
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stress and apoptosis and mortality (Legler, 2008; Deng et al., 2009; Environment Canada, 

2011; UNEP, 2010b). HBCD is highly toxic to algae. 72h EC50 (effective concentration in 50%) 

values based on decrease in population density in marine algae range from 9.3-12 μg/l in 

Skeletonema  costatum, and 50-370 μg/l in Thalassiosira pseudonana (Walsh et al., 1987). In 

studies by Roberts and Swigert (1997), 72h EC50 >2.5 μg/l was observed in the freshwater 

alga, Pseudokirchneriella subcapitata (=Selenastrum capricornutum). In the cladoceran 

crustacean, Daphnia magna (water flea), a 21-day chronic exposure to HBCD indicated a 

NOEC (no observed effect concentration) of 3.1 μg/l and a LOEC (lowest observed effect 

concentration) of 5.6 μg/l based on significant reduction in growth (Drottar and Krueger, 

1998). Thyroid hormone-dependent development effects in tadpoles of Xenopus laevis 

(Schriks et al., 2006) and significant adverse changes in the levels and patterns of circulating 

thyroid hormones in Salmo salar (Atlantic salmon) (Lower and Moore, 2007) and O. mykiss 

(Palace et al., 2010) exposed to HBCD have been observed. HBCD has also been reported to 

cause malformation and reduction of the survival of embryos of zebrafish, Danio rerio at 

96h exposure to concentrations of 0.5 and 1.0 mg/l (Deng et al., 2009). In the earthworm, 

Eisenia fetida, NOEC for survival and reproduction estimated as 4190 and 128 mg HBCD/kg 

dry soil, respectively, have been observed following 56 days exposure (UNEP, 2010b).HBCD 

has also been evaluated for phytotoxicity in the terrestrial ecosystem. At NOEC>5000 mg 

HBCD/kg dry soil, there was no adverse effect on seedling emergence in Zea mays (corn), 

Cucumber sativa (cucumber), Lycopersicon esculentum (tomato) and Glycine max (soybean) 

(UNEP,2010b). Overall, the data on ecotoxicity for HBCD indicate a risk to the environment 

at lower concentrations (10 to 100 times less) than posed by HCH, which is reflected in the 

proposed environmental quality standards (EQS) for these compounds (Figure 2). 
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[1] Stenzel and Markley 1997; [2] HSDB, 2009; [3] UNEP, 2010b; [4] EC, 2012; [5] Schafer et al., 1994; 

[6] Ferrando et al., 1995; [7] George and Nagel, 1990; [8] UNEP, 2006; [9] Deng et al., 2009; [10] Desjardins et 

al., 2005; [11] Drottar et al., 2001; [12] Drottar and Krueger 1998; [13] Roberts and Swigert, 1997. 

 

Figure 2 Graphical representation of the toxicity of HCH and HBCD in relation to their 

reported solubility and proposed (annual average) EQS. 
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5.0. Long-range Environmental Transport 

There is evidence of long-range environmental transport of HCH dating several decades. 

Several studies have reported the transport of HCH over long distances in the environment 

by air and ocean currents (Shen et al., 2005; Li and Macdonald, 2005; Brun et al., 2008). It is 

estimated that 12-30% of lindane used in agriculture volatilizes and becomes air-borne for 

long-range transport (USEPA, 2006). In the atmosphere, HCH condenses and deposits on 

oceans and freshwaters, and tends to accumulate in colder climates, particularly the Arctic 

where it is trapped by low evaporation rates (CEC, 2006). Far from important pollution 

sources, the Arctic is a recipient of HCH emitted from other parts of the world. In the Arctic, 

HCH has been detected in environmental media such as air (Li and Bidleman, 2003a) and 

water (Li and Macdonald, 2005), and biota (Willett et al., 1998; Hoekstra et al., 2002). 

HBCD has the potential for long-range environmental transport and trans-boundary threat 

like HCH. Arnot et al. (2009) observed that HBCD portioning behaviour in the atmosphere is 

such that at higher temperatures (15-350C) there is gaseous deposition while at lower 

temperatures (-35-5oC) its association with particles will enhance the rate of dry deposition. 

Studies have indicated the occurrence of HBCD in water and sediments and biota such as 

fish, birds and mammals in remote regions of the world (for example, the Arctic) considered 

to be far from point sources of emission as a result of atmospheric deposition (Law et al ., 

2006; de Wit et al .,2010; Letcher et al.,2010). Pollution of the Arctic with POPs such as HCH 

and HBCD is of great concern because people living in the Arctic are at high health risks due 

to their consumption of wildlife such as fish, birds and mammals with considerable 

quantities of these chemicals (CEC, 2006; UNEP, 2010b). It is concerns about the impacts of 

chemicals that has led to action by regulatory bodies worldwide. 
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6.0. Lessons Learnt: Regulation and Control 

It is apparent that the use of, and subsequent release of these two chemicals to the 

environment, has resulted in widespread contamination and significant concerns about the 

consequences of exposure of wildlife and humans. Although they are different chemicals, 

the two halogenated chemicals which have been discussed in this work are examples of 

compounds which, because of their toxicity and similar physico-chemical characteristics. 

Experience of chemicals in the environment has led to an approach to prioritise them based 

on such characteristics, and for regulators to focus on their PBT properties and the amount 

of chemicals that are in use, because impact is related to the concentration of a chemical. 

Perhaps the real lesson that society has learnt from the experience of using these, and 

similar chemicals, is that their release to the environment was in retrospect unwanted and 

unwise, and that tighter controls are required to prevent this occurring in future. 

Regulators are now using such properties and usage patterns to prioritise chemicals for 

which control measures on use, or approval for use, are based. In the United Sates, the 

USEPA HPV Challenge Programme (USEPA, 2007), aims to make available health and 

environmental effects data for “chemicals produced or imported in the United States in 

quantities of 1 million pounds or more per year”. Within Europe the Registration, 

Evaluation, Authorisation and Restriction of Chemical substances (REACH) system (EC, 

2006), came into force in 2007 and those who manufacture or import chemicals are obliged 

to register information about them in a central database. The REACH regulations also allow 

for identification of the most hazardous chemicals and for their substitution with 

alternatives. From a world wide perspective, it is also important that countries showing 

strong economic growth are also involved in controlling chemicals. As well as being a 
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signatory to the Stockholm Convention, China has newly enacted regulation, described as 

“China REACH” (Lau et al, 2012), which is aimed at ensuring the relevant authorities are 

notified about new chemical substances so that risks they pose can be effectively managed. 

There is, therefore, evidence that regulatory bodies worldwide are taking action to manage 

the use of chemicals, and the benefits of sound chemical management are of international 

concern (UNEP, 2012). 

 

7.0. Conclusions 

It is important for society to take stock of, and learn from past experiences in order to 

better protect the environment and prevent or reduce adverse consequences. The PBT 

properties and the long-range environmental transport exhibited by both HCH and HBCD 

have been affirmed by international treaties including the Stockholm Convention on POPs. It 

is apparent that our understanding of the fate and behaviour of chemicals has led to a 

number of frameworks where information can be utilised in future to minimise the risks 

that using chemicals can pose. There are increasing regulatory controls at both national and 

regional levels and that highlighting the benefits of managing chemicals is being undertaken 

at an international level. 
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