41 research outputs found

    Minimizing the Cost of Team Exploration

    Full text link
    A group of mobile agents is given a task to explore an edge-weighted graph GG, i.e., every vertex of GG has to be visited by at least one agent. There is no centralized unit to coordinate their actions, but they can freely communicate with each other. The goal is to construct a deterministic strategy which allows agents to complete their task optimally. In this paper we are interested in a cost-optimal strategy, where the cost is understood as the total distance traversed by agents coupled with the cost of invoking them. Two graph classes are analyzed, rings and trees, in the off-line and on-line setting, i.e., when a structure of a graph is known and not known to agents in advance. We present algorithms that compute the optimal solutions for a given ring and tree of order nn, in O(n)O(n) time units. For rings in the on-line setting, we give the 22-competitive algorithm and prove the lower bound of 3/23/2 for the competitive ratio for any on-line strategy. For every strategy for trees in the on-line setting, we prove the competitive ratio to be no less than 22, which can be achieved by the DFSDFS algorithm.Comment: 25 pages, 4 figures, 5 pseudo-code

    On the Complexity of Searching in Trees: Average-case Minimization

    Full text link
    We focus on the average-case analysis: A function w : V -> Z+ is given which defines the likelihood for a node to be the one marked, and we want the strategy that minimizes the expected number of queries. Prior to this paper, very little was known about this natural question and the complexity of the problem had remained so far an open question. We close this question and prove that the above tree search problem is NP-complete even for the class of trees with diameter at most 4. This results in a complete characterization of the complexity of the problem with respect to the diameter size. In fact, for diameter not larger than 3 the problem can be shown to be polynomially solvable using a dynamic programming approach. In addition we prove that the problem is NP-complete even for the class of trees of maximum degree at most 16. To the best of our knowledge, the only known result in this direction is that the tree search problem is solvable in O(|V| log|V|) time for trees with degree at most 2 (paths). We match the above complexity results with a tight algorithmic analysis. We first show that a natural greedy algorithm attains a 2-approximation. Furthermore, for the bounded degree instances, we show that any optimal strategy (i.e., one that minimizes the expected number of queries) performs at most O(\Delta(T) (log |V| + log w(T))) queries in the worst case, where w(T) is the sum of the likelihoods of the nodes of T and \Delta(T) is the maximum degree of T. We combine this result with a non-trivial exponential time algorithm to provide an FPTAS for trees with bounded degree

    A general lower bound for collaborative tree exploration

    Full text link
    We consider collaborative graph exploration with a set of kk agents. All agents start at a common vertex of an initially unknown graph and need to collectively visit all other vertices. We assume agents are deterministic, vertices are distinguishable, moves are simultaneous, and we allow agents to communicate globally. For this setting, we give the first non-trivial lower bounds that bridge the gap between small (knk \leq \sqrt n) and large (knk \geq n) teams of agents. Remarkably, our bounds tightly connect to existing results in both domains. First, we significantly extend a lower bound of Ω(logk/loglogk)\Omega(\log k / \log\log k) by Dynia et al. on the competitive ratio of a collaborative tree exploration strategy to the range knlogcnk \leq n \log^c n for any cNc \in \mathbb{N}. Second, we provide a tight lower bound on the number of agents needed for any competitive exploration algorithm. In particular, we show that any collaborative tree exploration algorithm with k=Dn1+o(1)k = Dn^{1+o(1)} agents has a competitive ratio of ω(1)\omega(1), while Dereniowski et al. gave an algorithm with k=Dn1+εk = Dn^{1+\varepsilon} agents and competitive ratio O(1)O(1), for any ε>0\varepsilon > 0 and with DD denoting the diameter of the graph. Lastly, we show that, for any exploration algorithm using k=nk = n agents, there exist trees of arbitrarily large height DD that require Ω(D2)\Omega(D^2) rounds, and we provide a simple algorithm that matches this bound for all trees

    Asynchronous rendezvous with different maps

    Get PDF
    © Springer Nature Switzerland AG 2019. This paper provides a study on the rendezvous problem in which two anonymous mobile entities referred to as robots rA and rB are asked to meet at an arbitrary node of a graph G = (V,E). As opposed to more standard assumptions robots may not be able to visit the entire graph G. Namely, each robot has its own map which is a connected subgraph of G. Such mobility restrictions may be dictated by the topological properties combined with the intrinsic characteristics of robots preventing them from visiting certain edges in E. We consider four different variants of the rendezvous problem introduced in [Farrugia et al. SOFSEM’15] which reflect on restricted maneuverability and navigation ability of rA and rB in G. In the latter, the focus is on models in which robots’ actions are synchronised. The authors prove that one of the maps must be a subgraph of the other. I.e., without this assumption (or some extra knowledge) the rendezvous problem does not have a feasible solution. In this paper, while we keep the containment assumption, we focus on asynchronous robots and the relevant bounds in the four considered variants. We provide some impossibility results and almost tight lower and upper bounds when the solutions are possible
    corecore