CORE

Asynchronous Rendezvous with Different Maps

Serafino Cicerone Gabriele Di Stefano Leszek Gąsieniec Alfredo Navarra

Abstract

This paper provides a study on the rendezvous problem in which two anonymous mobile entities referred to as robots r_{A} and r_{B} are asked to meet at an arbitrary node of a graph $G=(V, E)$. As opposed to more standard assumptions robots may not be able to visit the entire graph G. Namely, each robot has its own map which is a connected subgraph of G. Such mobility restrictions may be dictated by the topological properties combined with the intrinsic characteristics of robots preventing them from visiting certain edges in E.

We consider four different variants of the rendezvous problem introduced in [Farrugia et al., SOFSEM'15] which reflect on restricted maneuverability and navigation ability of r_{A} and r_{B} in G. In the latter, the focus is on models in which robots' actions are synchronised. The authors prove that one of the maps must be a subgraph of the other. I.e., without this assumption (or some extra knowledge) the rendezvous problem does not have a feasible solution. In this paper, while we keep the containment assumption, we focus on asynchronous robots and the relevant bounds in the four considered variants. We provide some impossibility results and almost tight lower and upper bounds when the solutions are possible.

1 Introduction

The Rendezvous problem comprises the task of meeting two anonymous mobile robots which start at different nodes of a graph or different locations in the Euclidean space. Many variants (with different assumptions) of rendezvous have been studied in the past. An exhaustive survey on the problem can be found in [13], and some further advances in $[2,3,4,5,9,11,14]$. In this paper, we are interested in the design of deterministic algorithms for asynchronous robots moving across edges in the underlying graph of network connections. The deterministic and asynchronous variant of rendezvous in graphs has been first introduced in [7]. Later in [6], the problem has been fully characterised and the adopted model utilised the minimal setting under which the rendezvous can be accomplished. The authors of [6] give also the answer to the question posed in [7] whether there exists a deterministic algorithm for rendezvous of two asynchronous robots in any finite connected graph without knowing any upper bound on its size. The minimal assumptions to enable rendezvous include:

- The input anonymous graph has no labels on points. Instead, at each node of degree d, the relevant end points of incident edges are sorted and labelled by port numbers $1, \ldots, d$. The local labelling of ports at each node is fixed, i.e., every robot sees the same local labelling. However, no coherence between local labellings is assumed. I.e., one edge can have two different port numbers at its opposite ends. When a robot leaves a node, it is aware of the port number by which it leaves and when it enters a node, it is aware of the entry port number. It can also verify, at each node, whether a given positive integer is a port number at this node.
- Each robot has a unique ID, however, it does not know the ID of the other robot.
- Robots can meet on nodes or along edges, i.e., forcing robots to meet on nodes may prevent them from rendezvous.

In the model described above robots do not know G nor the initial distance between them in G. They cannot mark neither the nodes nor the edges. Rendezvous has to be accomplished for any local labelling of ports. The robots terminate their walks at the time of meeting one another. The rendezvous algorithm works also for infinite graphs. In fact, in finite graph the resolution of the rendezvous is often trivial or it can be reduced to the graph exploration problem. For example, utilising search methods proposed in [8] one can force to meet the two robots in finite tree. Namely, the rendezvous can be easily reached once both robots discover the centre(s) of the tree.

In this paper, however, we are interested in a different model in which robots have no IDs and most importantly they may not be allowed to access the whole graph. The roaming space of each robot is limited to a specific subsets of nodes
and edges. The reasons to adopt such restriction may vary, however, the restriction itself is natural and was used earlier, e.g., in the evacuation problem [1] where an entity may represent a disabled person not able to adopt steep stairs or an escalator.

The rendezvous problem with heterogeneous (different accessibility restrictions) entities was formally introduced in [10] under the name of rendezvous with different maps. In the most general variant two asynchronous and anonymous robots r_{A} and r_{B} provided with two different maps G_{A} and G_{B}, both isomorphic to (possibly different) subgraphs G_{A}^{\prime} and G_{B}^{\prime} of the finite input graph G. The meeting can happen only on nodes but it is assumed that traversal of edges is mutually exclusive. This assumption is equivalent to the one used in [6], where robots can also meet on edges.

The main difference between the standard rendezvous problem studied, e.g., in [6] and the rendezvous with different maps studied here is in the way robots build their trajectories. In particular, in the latter the robots do not have to construct their maps (discover reachable nodes and edges). The maps are provided to them beforehand and the relevant trajectories can be precomputed prior to the actual search stage. This is in contrast to the model utilised in [6] where the trajectory of a robot is computed "on-the-go" on the basis of the current local information about port numbers, node degrees and the ID. Thus the main difficulty in the model adopted here refers to inconsistency of the maps provided to the robots in which one robot may not be able to access certain nodes or edges reachable for the other. Similar challenges occur also in blind rendezvous [12].

According to [10] without some extra information (e.g., node IDs) rendezvous with maps cannot be accomplished if $G_{A}^{\prime} \nsubseteq G_{B}^{\prime}$, where r_{A} is the robot with the smaller map. Thus here we also assume $G_{A}^{\prime} \subseteq G_{B}^{\prime}$. In contrast to [10], we focus solely on asynchronous robots. We study four natural variants of the rendezvous with different maps, combining two natural assumptions/properties considered in [10]: (1) availability of relative (with no explicit labels) ordering of nodes, and (2) presence of robot weights vs edge weight tolerance. The four variants are determined by the presence (or absence) of these two properties. We also discuss two hierarchies (that share the bottom and the top levels) formed by the four studied variants of the problem. At the top level of these hierarchies we assume presence of both properties. In the middle we have two incomparable levels where only one property is present. Finally at the bottom level we consider the absence of both properties.

We provide both the lower and the upper bounds with respect to the considered variants. We show that at the bottom level of the hierarchies very little can be done w.r.t. the rendezvous problem. In particular, the absence of the two properties makes the problem unsolvable in G with an arbitrary topology, and is tractable only in the case of simple topologies including paths and stars. We also show that in the two intermediate (and incomparable) variants rendezvous can be efficiently concluded in cycles and trees (the robots cannot rendezvous in cycles at the bottom level). Finally, we propose efficient (in terms of moves made) algorithm for the upper level requiring only $O(N \log N)$ steps. This result is almost tight in view of the natural lower bound of $\Omega(N)$, where N denotes the cumulative number of vertices of the two maps G_{A}^{\prime} and G_{B}^{\prime}.

Due to space limitations, figures are moved to Appendix.

2 Model

We start with a summary and further extension of the computation model introduced in [10]. We consider rendezvous of anonymous (and indistinguishable with respect to the control mechanism) robots in networks modelled by finite undirected graphs. The network $G=(V, E)$ is a simple connected graph, where $|V|=n$ and $|E|=m$. The two robots r_{A} and r_{B} initiate search at different starting nodes $s_{A} \neq s_{B}$ in G. Each robot $r_{X} \in\left\{r_{A}, r_{B}\right\}$ has its own map $G_{X}=\left(V_{X}, E_{X}\right)$ which is isomorphic to a specific subgraph $G_{X}^{\prime}=\left(V_{X}^{\prime}, E_{X}^{\prime}\right)$ of G induced by the sets of nodes V_{X}^{\prime} and edges E_{X}^{\prime} reachable from s_{X} by robot r_{X}. In particular, the matching between the map of r_{X} and G_{X}^{\prime} is deterministic and known to r_{X}. We emphasise that each robot r_{X} only knows its own map G_{X} and the starting node s_{X}. In other words r_{A} has no knowledge of G_{B} and s_{B}, and vice versa. Moreover, during search r_{A} cannot adopt edges outside of its $\operatorname{map} G_{A}$ and its trajectory is oblivious w.r.t. to the knowledge possessed by r_{B}. Note that, once r_{X} has computed its trajectory on its map, by the above assumptions, it can move on G_{X}^{\prime} consistently, without ambiguities.

Let $n_{X}=\left|V_{X}\right|$ be the number of nodes of map $G_{X}, m_{X}=\left|E_{X}\right|$ be the number of edges of G_{X}, while by N and M we denote $n_{A}+n_{B}$ and $m_{A}+m_{B}$, respectively. Finally, given a node $v \in V$, the set of its neighbours is denoted by $N_{G}(v)=\left\{v^{\prime} \mid\left(v, v^{\prime}\right) \in E\right\}$.

We assume that the robots act in asynchronous fashion. Each robot computes its trajectory, the sequence of visited nodes and edges, independently and prior to the actual search. We assume that the use of edges is exclusive, i.e., two robots cannot be located (move in either directions) on the same edge at any time. When the robot is ready to move
along a chosen edge it awaits the relevant "green light" signal (meaning the edge is now available) from the system. In consequence, rendezvous is possible only on nodes when one robot is immobilised indefinitely or awaits access of an edge through which the other robot is approaching. The time required to move across an edge is assumed to be finite but unbounded. In turn, as the complexity of the solution we adopt the sum of the lengths of the robots' trajectories before rendezvous, i.e., the number of edges traversed in total.

In what follows we formalise four different variants of rendezvous with different maps. Each variant is determined by the availability of extra knowledge O and W (for the definition see below) w.r.t. the maps. For all considered variants, we assume that G_{A}^{\prime} is a subgraph of G_{B}^{\prime}. Otherwise, as already indicated, the rendezvous problem with different maps may not have a solution [10].

- Property O: the nodes of G are totally ordered. In particular, if $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ then $v_{i}<v_{i+1}$, for all $i=1,2, \ldots, n-1$. We say that Property O holds if this order is consistent with the order of nodes observed by robot r_{X} in G_{X}. That is, if $V_{X}=\left\{v_{1}^{X}, v_{2}^{X}, \ldots, v_{n_{X}}^{X}\right\}, v_{p}^{X}=v_{i}$, and $v_{q}^{X}=v_{j}$, where $v_{i}, v_{j} \in V$ and $i<j$, we also get $v_{p}^{X}<v_{q}^{X}$.
- Property W: each robot $r_{X} \in\left\{r_{A}, r_{B}\right\}$ has an associated weight $w_{X} \in \mathbb{R}^{+}$, and each edge $e \in E$ can tolerate weights up to the limit $w(e) \in \mathbb{R}^{+}$. In this setting let H_{X} denote the (possibly disconnected) subgraph of G induced by edges $e \in E$ such that $w(e) \geq w_{X}$. Then G_{X}^{\prime} is the connected component of H_{X} which contains s_{X}. We assume that the maps $G_{X}=\left(V_{X}, E_{X}\right)$ contains information about the weights tolerated by the relevant edges (where $w\left(e^{X}\right)=w(e)$, for each $e^{X} \in E_{X}$ represents the edge $e \in E$).

We consider four variants based on properties O and W :

- WO variant, where both properties O and W hold,
- $\bar{W} O$ variant, where only O holds,
- WO variant, where only W holds,
- WO variant, where neither O nor W holds.

By slightly abusing our notation the codes $W O, \bar{W} O, W \bar{O}$, and $\overline{W O}$ will be used not only to define the variants of the problem, but also the set of instances of the relevant variants. For example, WO will refer to all instances of rendezvous with different maps where each robot r_{X} knows: (1) its weighted map G_{X}, (2) the starting point s_{X}, and (3) it is aware that its node ordering is consistent with the node ordering of the other robot. Using this notation one can define a relationship \sqsubseteq between the elements of $\mathbb{V}=\{\mathrm{WO}, \overline{\mathrm{W} O}, \mathrm{~W} \overline{\mathrm{O}}, \overline{\mathrm{WO}}\}$. For example, $\overline{\mathrm{WO}} \sqsubseteq \overline{\mathrm{W} O}$ means that for each instance $i \in \overline{\mathrm{WO}}$ it is possible to identify a set $I \subseteq \overline{\mathrm{~W}} \mathrm{O}$ of instances induced by i as follows: if $i=\left(G_{A}, s_{A}, G_{B}, s_{B}\right)$, then each instance in I is obtained from i by maintaining ($G_{A}, s_{A}, G_{B}, s_{B}$) and by adding any possible consistent ordering on nodes of G_{A} and G_{B}. One can observe that such relationship defines two hierarchies: $\mathrm{WO} \sqsubseteq \overline{\mathrm{WO}} \sqsubseteq \mathrm{WO}$ and $\overline{\mathrm{WO}} \sqsubseteq \mathrm{WO} \sqsubseteq \mathrm{WO}$. The following holds.

Remark 1. Let $\mathcal{V}_{1}, \mathcal{V}_{2} \in \mathbb{V}$ such that $\mathcal{V}_{1} \sqsubseteq \mathcal{V}_{2}$. If $i \in \mathcal{V}_{1}$ and $I \subseteq \mathcal{V}_{2}$ is the set of instances induced by i, then:

- if is is solvable in \mathcal{V}_{1}, then each induced instance in I is solvable in \mathcal{V}_{2};
- if all the instances in I are unsolvable in \mathcal{V}_{2}, then i is unsolvable in \mathcal{V}_{1}.

In the remaining part of the paper we propose and analyse algorithmic solutions for the rendezvous problem with different maps. Our algorithms assume each robot r_{X} has the input map G_{X} and the initial position s_{X}. The output of an algorithm refers the rendezvous trajectory computed by each r_{X} on G_{X}. The complexity of the solution is defined as the sum of the lengths of trajectories adopted by both robots until rendezvous takes place. For the sake of simplicity, knowing that G_{X} and G_{X}^{\prime} are isomorphic and that r_{X} is aware of the isomorphism, in the following we always write G_{X} rather than G_{X}^{\prime} even when we refer to the moves along edges in G_{X}^{\prime} and the properties of G_{X}^{\prime}.

3 Preliminary results

In this section we provide a general lower bound holding for all variants, and a more restrictive one which does not hold only for WO. Then we present a sufficient condition for solving the rendezvous problem that will be exploited successively by our resolution algorithms for variants $W O$ and $\bar{W} O$. Finally, we provide optimal algorithms and infeasibility results for maps with specific topologies in the weaker variants $\overline{W O}$ and $W \bar{O}$.

3.1 Lower bounds

The following lemma provides a lower bound on the length of the trajectory performed by robots in any solving algorithm with respect to the WO variant.

Lemma 1. In variant WO , rendezvous requires use of trajectories of length $\Omega(N)$.
Proof. Consider an instance of the problem where $n_{A}=1$. Then, any rendezvous algorithm is stuck with r_{A} immobilised in the starting node s_{A}. Since r_{B} has no knowledge of the position of r_{A}, in the worst case it has to move throughout all the nodes of its map.

Thus by Remark 1 and Lemma 1 the lower bound $\Omega(N)$ applies also in any variant in \mathbb{V}.
Lemma 2. In variants $\overline{\mathrm{W}} \mathrm{O}$ and $\mathrm{W} \overline{\mathrm{O}}$ rendezvous requires use of trajectories of length $\Omega(M)$.
Proof. Recall first that neither in variant $\overline{\mathrm{W}} \mathrm{O}$ nor in $\mathrm{W} \overline{\mathrm{O}}$ robots have enough information to meet in (agreed in advance) target node for their meeting.

In variant $\bar{W} O$ consider the case in which the map of r_{B} is formed of $m_{B}=\Omega\left(n_{B}^{2}\right)$ edges and the map of r_{A} is a single edge $e=\left\{v_{1}, v_{2}\right\}$. According to Lemma 1, any rendezvous algorithm \mathcal{A} must force robots to visit all nodes in their map. Thus also r_{A} has to visit both nodes v_{1} and v_{2} by traversing the only edge at most once. If r_{B} traverses only $o\left(m_{B}\right)$ edges and stops, the adversary picks e among edges not traversed by r_{B} with the endpoints different to the node where r_{B} rests eventually. This is possible if the map of r_{B} is dense enough. During rendezvous, r_{A} is allowed first to access e and is kept there until r_{B} stops. Since the final node on r_{B} 's trajectory is different to v_{1} and v_{2} rendezvous is not reached. In the complementary case, i.e., when r_{B} visits its whole map we assume that e is the last edge visited by r_{B}. Here also the adversary allows r_{A} to enter this edge first where r_{A} waits until r_{B} comes to visit this edge. This will force r_{B} to visit $\Omega\left(m_{b}\right)=\Omega(M)$ edges.

In variant $\mathrm{W} \overline{\mathrm{O}}$ consider a 3-layer graph $G=(V, E)$, where the set of nodes V is partitioned into three subsets V_{1}, V_{2} and V_{3} of the same size $\frac{n}{3}$. Also the set of edges is partitioned into E_{1} and E_{2}, such that graphs $\left(V_{1} \cup V_{2}, E_{1}\right)$ and $\left(V_{2} \cup V_{3}, E_{2}\right)$ are complete bipartite graphs. We also assume that edge tolerance within each set E_{i}, for $i=1,2$, is uniform, however, edges in E_{2} tolerate w_{A} but those in E_{1} don't. In contrast, all edges in E tolerate w_{B}. Assume also that $s_{A} \in V_{2}$ and $s_{B} \in V_{1}$.

By Lemma 1, r_{X} cannot stay in s_{X}. Let e be the edge r_{A} traverses first. The adversary temporarily entraps r_{A} on e. If the trajectory computed by r_{B} is of length at least $\Omega\left(n^{2}\right)$, due to the uniform weight tolerance on edges in E_{2} the adversary can pick e, s.t., occurs on r_{B} 's trajectory only after $\Omega\left(n^{2}\right)$ steps. In the complementary case, when the trajectory of r_{B} is of length $o\left(n^{2}\right)$, the adversary picks e outside of the trajectory of r_{B}. In this case the adversary instructs r_{B} to move first entrapping it in the last edge e^{\prime} of its trajectory. If the protocol for r_{A} is perpetual or of length $\Omega\left(n^{2}\right)$ due to uniformity of edges the adversary can force this protocol to walk $\Omega\left(n^{2}\right)$ edges before entering e^{\prime}, and the rendezvous takes place only if $e^{\prime} \in E_{2}$. If the protocol for r_{A} is of length $o\left(n^{2}\right)$ the adversary keeps r_{B} away from e^{\prime} and stops at its destination node v. Finally, r_{V} is released to finish walk at v^{\prime}. As the robots cannot agree in advance to meet on the same target node, i.e., $v \neq v^{\prime}$, there is no rendezvous in this case.

It follows from Lemma 2 that in variants $\overline{W O}$ and $W \bar{O}$ (and by Remark 1 also in $\overline{W O}$) any algorithm has to move robots through all edges of their respective maps. Whereas, in variant WO this is not true as robots could exploit knowledge about nodes' ordering and edges' weight tolerance.

3.2 A sufficient condition for solving rendezvous

In this section we provide a sufficient condition for solving rendezvous with different maps. We first formalise concepts of walks and sub-walks in a graph (cf Fig. 4). A walk in a graph G is an ordered sequence of edges of G, $W=\left(\left(v_{i_{1}}, v_{i_{2}}\right),\left(v_{i_{2}}, v_{i_{3}}\right), \ldots,\left(v_{i_{k-1}}, v_{i_{k}}\right)\right)$, where the second node of an edge is the first node of the subsequent edge; in $W, v_{i_{1}}$ is the starting node and $v_{i_{k}}$ is the final node. By $|W|$, we denote the number of edges forming W. Given two walks W^{\prime} and $W^{\prime \prime}$ in G, we write $W^{\prime} \subseteq W^{\prime \prime}$ when W^{\prime} is a sub-walk of $W^{\prime \prime}$, i.e., W^{\prime} is a (not necessarily contiguous) sub-sequence of edges in $W^{\prime \prime}$. If a walk W contains all edges of G then it is called a complete walk of G.

Lemma 3. Let W_{X} be a complete walk of map G_{X} which starts in s_{X}. If $W_{A} \subseteq W_{B}$, then the rendezvous is solvable even in variant $\overline{\mathrm{WO}}$.

Proof. An algorithm \mathcal{A} can solve the rendezvous as follows: move robot r_{X} along walk W_{X} starting at s_{X} and finishing in the final node of W_{X}, unless the rendezvous is accomplished earlier. Since $W_{A} \subseteq W_{B}$, robot r_{B} has to visit all edges in W_{A} in the same order as robot r_{A} does. Thus no adversary can force r_{B} to overpass r_{A} on W_{A} despite actions of robots being asynchronous.

3.3 On the complexity of the rendezvous problem in variants $\overline{\mathrm{WO}}$ and $\mathrm{W} \overline{\mathrm{O}}$

We start the discussion of rendezvous with different maps in variant $\overline{\mathrm{WO}}$.
As already discussed, one can find in [6] full characterisation of the standard asynchronous rendezvous problem, including the minimal assumptions under which the rendezvous can be accomplished. These include (1) consistent port numbering for the two maps, (2) unique IDs of robots, and (3) meeting allowed at nodes and edges. Consider now variant $\overline{\mathrm{WO}}$ variant with an instance in which $G_{A}=G_{B}$. In such case, one can claim that "rendezvous with different maps" is equivalent to "standard rendezvous problem" when neither port numbering nor node IDs are provided.

Thus using the argument above and [6] we get the following theorem.
Theorem 1. In variant $\overline{\mathrm{WO}}$ rendezvous is not feasible.
Note that rendezvous can be obtained in more specific topologies. We discuss some cases below. It is worth to mention that the rendezvous algorithm for trees sketched in the introduction does not work when different maps are in use, as the centres computed for different maps may not coincide.

Lemma 4. In variant $\overline{\mathrm{WO}}$, if network G is a path rendezvous can be solved optimally.
Proof. Since $G_{A} \subseteq G_{B} \subseteq G$, also both G_{A} and G_{B} are paths. Each robot adopts the following strategy: from the starting node s_{X}, go to an arbitrary endpoint of the path and then walk along all the edges to reach the other endpoint. Due to the linear structure of the maps and inclusion assumption the robots must eventually meet. The complexity of rendezvous is trivially bounded by $O(N)$, and it is optimal in view of the lower bound from Lemma 1 .

Lemma 5. In variant \bar{W}, if network G is a star graph rendezvous can be solved optimally.
Proof. As $G_{A} \subseteq G_{B} \subseteq G$ then each of G_{A} and G_{B} can be a star, a single edge, or just a node. Each robot adopts the following strategy: from the starting node s_{X}, visit each leaf, and finally stop at the centre. In the degenerate case of a single edge, the robot can arbitrarily choose one node as the centre and apply the same strategy. If G_{A} is a node, the robot cannot move. Observe that either robots meet at a non-central node while attempting to enter the same edge, or they meet in the centre of the star, eventually. The complexity refers to a single traversal of the star and is bounded by $O(N)$.

The next result affirms that in case the input map is a cycle the rendezvous problem cannot be solved in the WO variant. In fact, cycles will play the central role in discussion on how the rendezvous complexity changes in the relevant variants.

Lemma 6. In variant $\overline{\mathrm{WO}}$, if G is a cycle rendezvous cannot be resolved.
Proof. Consider the case with $G_{A}=G_{B}$ both being a cycle with an even number of nodes. Assume an instance where the two robots lie at some antipodal nodes of the cycle. The adversary can force a symmetric behaviour of the two robots. That is, whatever one robot does according to the provided algorithm, the other makes exactly the same symmetric move. As robots are always located at some antipodal positions the meeting will never take place.

Consider now the subset $I \subseteq \overline{\mathrm{WO}}$ containing all instances with $G_{A}=G_{B}$. If $I^{\prime} \subset \mathrm{WO}$ contains all instances with $w_{A}=w_{B}$ drawn from I, we conclude using Theorem 1 that also in variant $\bar{W} \bar{O}$ rendezvous is not always feasible.

Theorem 2. In variant $\mathrm{W} \overline{\mathrm{O}}$ rendezvous with maps is not always feasible.
The following lemma provides a feasibility results for variant $\mathrm{W} \overline{\mathrm{O}}$ when $w_{A}<w_{B}$ and the topology of G is restricted to cycles.

Lemma 7. In variant $\mathrm{W} \overline{\mathrm{O}}$, if G is a cycle and $w_{A}<w_{B}$ then there exists an algorithm that allows robots to meet along walks of length $O\left(N \cdot\left|b_{A}\right|\right)$, where b_{X} is the binary representation of weight w_{X}.

Proof. Since G is a cycle and $G_{A} \subseteq G_{B} \subseteq G$ then G_{X} is either a path or a cycle.
If G_{X} is a path then r_{X} applies the strategy provided in the proof of Lemma 4: from s_{X}, r_{X} goes to an arbitrary endpoint of the path and then walk along all the edges to reach the other endpoint. If G_{X} is a cycle, the algorithm works as follows. Consider the binary representation b_{X} of w_{X}. Initially, robot r_{X} traverses the whole cycle (returning to s_{X}) in any direction; then, for each bit of b_{X} and starting from the least significant bit: if the current bit is 1 , the robot performs a complete visit of the cycle in one direction, if the bit is 0 , then the robot does the same in the opposite direction.

If G_{A} is a path, the two robots meet within the first two visits of the cycle made by r_{B}, hence with a trajectory of length at most $2 N$. If G_{A} is a cycle and $w_{A}<w_{B}$, the two trajectories differ as either (1) b_{A} and b_{B} have different sizes or (2) they differ for on least one bit. In the first case, r_{B} traverses G more times than r_{A} if they do not meet before, so they must meet eventually. In the second case, they robots traverse the cycle in the opposite directions at least once, and this is enough to force their meeting. The complexity of this algorithm is $O\left(N \cdot\left|b_{A}\right|\right)$, as $\left|b_{A}\right| \leq\left|b_{B}\right|$.

4 A $O(N \log N)$ algorithm for variant WO

In [10], the authors define an algorithm for the case of synchronous robots that solves the rendezvous in variant WO utilising trajectories of length $O(N)$. A similar technique for asynchronous robots leads to trajectories of length $O\left(N^{2}\right)$. In what follows we propose a novel algorithm for asynchronous robots with the complexity $O(N \log N)$. The new algorithm is based on new techniques an it requires better understanding of the considered problem.

We start by observing that in variant WO one can define the total order \prec^{WO} on edges in E, where $G=(V, E)$ is the input network. This ordering is defined as follows: edges are first ordered according to their (increasing) weights, and in case of ties edges with smaller endpoints are earlier in the order. Formally, given two edges $e^{\prime}=\left(v_{i}, v_{j}\right)$ and $e^{\prime \prime}=\left(v_{i^{\prime}}, v_{j^{\prime}}\right)$ then $e^{\prime} \prec^{\mathrm{WO}} e^{\prime \prime}$ if and only if (1) $w\left(e^{\prime}\right)<w\left(e^{\prime \prime}\right)$, or (2) $w\left(e^{\prime}\right)=w\left(e^{\prime \prime}\right)$ and $\min (i, j)<\min \left(i^{\prime}, j^{\prime}\right)$.

Let $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ where $e_{i} \prec^{\text {WO }} e_{i+1}$, for each $i=1,2, \ldots, m-1$ (i.e., indeces are consistent with the order \prec^{WO}). Hence, if $G(i)$ is the subgraph of G induced by edges $e_{i}, e_{i+1}, \ldots, e_{m}$, the following properties hold: (1) $G(i)$ may be disconnected, and (2) $G(i+1)$ is a subgraph of $G(i)$.

Notice that the same notation adopted for elements of E is used to refer to edges in a map G_{X}, that is, if $E_{X}=\left\{e_{1}^{X}, e_{2}^{X}, \ldots, e_{m_{X}}^{X}\right\}$, then $e_{i}^{X} \prec{ }^{\text {WO }} e_{i+1}^{X}$ for each $i=1,2, \ldots, m_{X}-1$.

We now introduce a rendezvous method called two-steps approach. In the first step, a rendezvous algorithm \mathcal{A} reduces the search space by computing a convenient sub-map $H_{X} \subseteq G_{X}$. In the second, \mathcal{A} instruct each robots to meet inside H_{X}.

The intuition behind this approach is the smaller/simpler the search space, rendezvous becomes more efficient. According to Lemma $1, H_{X}$ must contain all n_{X} nodes of G_{X}, thus the search space reduction can only affect edges from G_{X}. Also, since H_{X} must be connected, it contains at least $n_{X}-1$ edges in the form of a spanning tree of G_{X}.

The search space reduction in variant WO is given below. Please note, this method cannot be used in the other three variants since it relies on order \prec^{WO} allowing to create the spanning tree T_{X}.

Definition 1. Consider variant WO with maps G_{X}. Denote by T_{X} the maximal spanning tree of G_{X} obtained by Kruskal's algorithm, where edges are drawn in the reverse order to $\prec{ }^{\mathrm{WO}}$.

The following lemma determines a relationship between the maximal spanning trees T_{A} and T_{B}.
Lemma 8. T_{A} is a subtree of T_{B}.
Proof. In this variant $E_{A} \subseteq E_{B}$. Moreover, if there exists an edge $e \in T_{B}$ whose endpoints are both in V_{A} but $e \notin T_{A}$, then for any $e^{\prime} \in T_{A}$ we have $e \prec^{\text {WO }} e^{\prime}$. Thus by applying the Kruskal's algorithm according to the reverse order to $\prec{ }^{\mathrm{WO}}$, all edges selected in T_{A} will be also edges of T_{B}.

In Fig. 1 we present a pseudo-code of procedure MAKEWALK adopting complete walk along edges of tree T_{X}. In particular, given T_{X} and a starting node s_{X}, by calling MAKEWALK $\left(T_{X}, s_{X}\right)$ we obtain a walk W_{X} that starts at s_{X}, passes through all the edges of the tree (in each direction in the form of well defined Euler tour), and finishes at s_{X}. This property is crucial for any rendezvous algorithm based on traversing T_{X} several times. The following lemma provides a useful relationship between W_{A} and W_{B}. An example of application of procedure MAKEWALK is shown in Fig. 5.

Lemma 9. Let $W_{A}=\operatorname{MakeWalk}\left(T_{A}, s_{A}\right)$, and $W_{B}=\operatorname{MakeWalk}\left(T_{B}, s_{B}\right)$. Then, $W_{A} \subseteq 2 \cdot W_{B}$, where $2 \cdot W_{B}$ is the concatenation of two occurrences of W_{B}.

```
Procedure: MAKEWALK
Input : Tree \(T_{X}\), initial robot's position \(s_{X}\)
Output: A walk \(W\) starting at \(s_{X}\) and passing through all nodes in \(T_{X}\).
```

```
Let \(N_{T_{X}}\left(s_{X}\right)=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}\), such that \(i_{1}<i_{2}<\ldots<i_{k}\);
```

Let $N_{T_{X}}\left(s_{X}\right)=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}$, such that $i_{1}<i_{2}<\ldots<i_{k}$;
$W=$ list(); // W is initialised as an empty list
$W=$ list(); // W is initialised as an empty list
for $1 \leq j \leq k$ do
for $1 \leq j \leq k$ do
Let $e=\left(s_{X}, v_{i_{j}}\right)$;
Let $e=\left(s_{X}, v_{i_{j}}\right)$;
W.append (e).concat($\left.\operatorname{MaKESUBWALK}\left(T_{X}, v_{i_{j}}, s_{X}\right)\right)$;
W.append (e).concat($\left.\operatorname{MaKESUBWALK}\left(T_{X}, v_{i_{j}}, s_{X}\right)\right)$;
return W;

```
return \(W\);
```


Procedure: MakeSubWalk

Input : Tree T_{X}, current node s, previous node $f \in N_{T_{X}}(s)$
Output: A closed walk W starting and finishing in s, passing through all nodes in $T_{X} \backslash T_{f}$, where T_{f} is the maximal subtree of T_{X} rooted at f.
Let $N_{T_{X}}(s)=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}$, such that $i_{1}<i_{2}<\ldots<i_{k}$;
Let $\operatorname{succ}\left(v_{i_{j}}\right)= \begin{cases}v_{i_{j+1}} & \text { if } j<k \\ v_{i_{1}} & \text { otherwise }\end{cases}$
Let $n e x t=\operatorname{succ}(f)$;
Let $e^{\prime}=(s, n e x t)$ and $e^{\prime \prime}=(s, f)$;
$W=$ list $\left(e^{\prime}\right) ; / / W$ is initialised as a list containing just e^{\prime}
for $k-1$ times do W.concat (MaKESUBWALK $\left.\left(T_{X}, n e x t, s\right)\right)$.append $\left(e^{\prime \prime}\right)$; next $=\operatorname{succ}($ next $)$;
return W;

Figure 1: Procedure MaKEWALK executed by robot $r_{X} \in\left\{r_{A}, r_{B}\right\}$ starting on node s_{X} of T_{X}. The requested walk W_{X} starting from and ending at the initial robot's position s_{X}, and containing all edges in T_{X} is obtained by exploiting the recursive Procedure MaKESUBWALK.

Proof. Assume first $s_{A}=s_{B}$. From Lemma 8 we have that $T_{A} \subseteq T_{B}$. Procedure MaKEWALK ensures that also the ordered tree T_{A} is a subtree of the ordered tree T_{B}, that is, nodes in the walks maintain their relative ordering. It follows that $W_{A} \subseteq W_{B}$. Since in general $s_{A} \neq s_{B}$ and the length of W_{X} is $2 n_{X}-3$, then W_{B} may contain a $\left.\operatorname{suffix}\left(v_{j}^{A}, v_{j+1}^{A}\right),\left(v_{j+1}^{A}, v_{j+2}^{A}\right), \ldots,\left(v_{2 n_{A}-4}^{A}\right), v_{2 n_{A}-3}^{A}\right)$ of W_{A} before its prefix $\left(v_{1}^{A}, v_{2}^{A}\right),\left(v_{2}^{A}, v_{3}^{A}\right), \ldots,\left(v_{j-2}^{A}, v_{j-1}^{A}\right)$, for some $1<j<2 n_{A}-2$. However, by traversing W_{B} twice, we can guarantee rendezvous by visiting W_{A} in the right order at least once.

Algorithm WO-ASYnch (cf Fig. 2) exploits Procedure MAKEWALK to build complete walks that fulfill condition of Lemma 9. The following theorem states that rendezvous in variant WO can be solved with complexity $O(N \log N)$, for the input network G with an arbitrary topology.

Theorem 3. In variant WO , for any network G, Algorithm WO-ASYNCH guarantees rendezvous along a trajectory of length $O(N \log N)$.

Proof. Algorithm WO-ASYNCH can be divided into four parts: (1) in the first two lines the spanning tree T_{X} is computed along with its integer logarithmic size (i.e., $k_{X}=\left\lceil\log \left|T_{X}\right|\right\rceil$), (2) Line 4 , where the walk $W_{X}=\operatorname{MaKEWALK}\left(T_{X}, s_{X}\right)$ is computed, (3) the block of Lines 5-14, where a target t_{X} is computed, and (4) block of Lines $15-18$, where the complete walk W_{X}^{+}is computed and performed. Such a walk W_{X}^{+}consists of $2 k_{X}$ concatenations of W_{X} plus a sub-sequence of W_{X} (i.e., the final step) needed to reach the target t_{X}. We now analyze two cases, according to the sizes k_{A} and k_{B}.

- Case $k_{B}>k_{A}$. We show that W_{A}^{+}is a sub-walk of W_{B}^{+}, and hence from Lemma 3 the claim holds. In W_{A}^{+}the sequence W_{A} is repeated $2 k_{A}$ times plus a subsequence of W_{A} (due to the final step). In W_{B}^{+}, the sequence W_{B} is repeated $2 k_{B} \geq 2\left(k_{A}+1\right)$ times, which is at least $2 k_{A}+2$ times. From Lemma 9, the first two repetitions of

```
Algorithm: WO-ASYNCH
Input: \(\operatorname{Map} G_{X}=\left(V_{X}, E_{X}\right)\), starting node \(s_{X}\), robot's weight \(w_{X}\)
/* Part (1): compute \(T_{X}\) and its integer logarithmic size */
compute the maximal spanning tree \(T_{X}\) (by using the ordering \(\prec^{\mathrm{WO}}\) );
if \(\left|T_{X}\right|==1\) then exit ;
let \(k_{X}=\left\lceil\log \left|T_{X}\right|\right\rceil\);
/* Part (2): compute walk \(W_{X}\) */
let \(W_{X}=\operatorname{MakeWalk}\left(T_{X}, s_{X}\right)\);
/* Part (3): compute target \(t_{X}\) */
let \(i_{X}=\operatorname{argmin}_{i}\left\{w\left(e_{i}^{X}\right) \mid e_{i}^{X} \in T_{X}\right\} ;\)
let \(j=n i l\);
foreach \(i\) in \(\left(i_{X}+1, i_{X}+2, \ldots, m_{X}\right)\), in order do
    let \(T(i)\) be a largest subtree of \(T_{X}\) induced by nodes in \(G(i)\);
    if \(k_{X}>\lceil\log |T(i)|\rceil\) then
        \(j=i-1\);
        break
if \(j==\) nil then \(j=m_{X}\);
let \(e\) be any edge in \(T(j)\) having maximum order ;
4 let \(t_{X}\) be the endpoint of \(e\) with largest index ;
/* Part (4): compute walk \(W_{X}^{+}\)by using \(W_{X}\) and \(t_{X}\) /
while not ( \(W_{X}\) has been fully traversed \(2 \cdot k_{X}\) times \(\vee\) rendezvous is accomplished ) do
    traverse the next edge in \(W_{X}\)
while not ( \(r_{X}\) is on \(t_{X} \vee\) rendezvous is accomplished) do
    traverse the next edge in \(W_{X}\)
```

Figure 2: Algorithm WO-ASYNCH executed by robot $r_{X} \in\left\{r_{A}, r_{B}\right\}$.
W_{B} assure that W_{A} is contained in $2 W_{B}$, that is a subsequence of W_{B}^{+}. It follows that $2 k_{A}+2$ sequences of W_{B} include $2 k_{A}+1$ sequences of W_{A}. Since W_{A}^{+}is a subsequence of $2 k_{A}+1$ repetitions of W_{A}, then W_{A}^{+}is contained in W_{B}^{+}.

- Case $k_{B}=k_{A}$. We show that robots r_{A} and r_{B} can select a common node t_{X} to rendezvous. When r_{B} executes Part (3) of the algorithm it computes a tree denoted as $T(j)$, which corresponds to the smallest subtree of T_{B} having size k_{B}. For r_{B}, tree $T(j)$ represents T_{A} according to the assumption $k_{B}=k_{A}$. For instance, in Fig. 6, T_{1} represents T_{B} and T_{3} represents $T(j)=T_{A}$. We now prove that there is exactly one occurrence of T_{A} in T_{B}, and the following relationships hold:
$-\left|T_{B}\right| \geq\left|T_{A}\right| ;$
$-\left\lceil\log \left(\left|T_{B}\right|\right)\right\rceil=\left\lceil\log \left(\left|T_{A}\right|\right)\right\rceil$.
Denoting by n the integer value $\left\lceil\log \left(\left|T_{B}\right|\right)\right\rceil=\left\lceil\log \left(\left|T_{A}\right|\right)\right\rceil$ we can represent $\log \left(\left|T_{B}\right|\right)$ and $\log \left(\left|T_{B}\right|\right)$ as follows:

$$
\log \left(\left|T_{B}\right|\right)=(n-1)+b, \log \left(\left|T_{A}\right|\right)=(n-1)+a, \text { with } 0<a<b \leq 1 .
$$

One can observe that $\log \left(\left|T_{B}\right|\right)-\log \left(\left|T_{A}\right|\right)=b-a<1$, which in turns implies $\log \left(\left|T_{B}\right| /\left|T_{A}\right|\right)<1,\left|T_{B}\right| /\left|T_{A}\right|<$ 2 , and finally the required relationship $\left|T_{B}\right|<2\left|T_{A}\right|$. This relationship implies that if r_{B} selects at Lines 13 and 14 the largest in order edge e belonging to $T(j)$, and node t_{X} as the endpoint of e with the largest index, then the same target node will be selected by both r_{A} and r_{B} (i.e., $t_{A}=t_{B}$).

Summarising, if $k_{B}>k_{A}$, the algorithm forces robots to meet during the $2 k_{B}$ repetitions of walk W_{B}. And if $k_{B}=k_{A}$, the algorithm forces robots to meet at $t_{A}=t_{B}$. Concerning the complexity, the trajectory of each robot is of length at most $2 \cdot k_{B} \cdot\left|T_{B}\right|=2 \cdot\left\lceil\log \left|T_{B}\right|\right\rceil \cdot\left|T_{B}\right|$. Thus the total complexity of rendezvous is $O(N \log N)$.

```
Algorithm: TREE-W O-ASYNCH
Input: Map defined by the tree \(T_{X}=\left(V_{X}, E_{X}\right)\), starting node \(s_{X}\)
let \(k_{X}=\left|T_{X}\right|\);
let \(W_{X}=\operatorname{MakeWalk}\left(T_{X}, s_{X}\right)\);
let \(t_{X}\) be the node in \(V_{X}\) with maximum order ;
while not ( \(W_{X}\) has been fully traversed \(2 \cdot k_{X}\) times \(\vee\) rendezvous is accomplished ) do
    traverse the next edge in \(W_{X}\)
while not ( \(r_{X}\) is on \(t_{X} \vee\) rendezvous is accomplished ) do
    traverse the next edge in \(W_{X}\)
```

Figure 3: Algorithm Tree- $\bar{W} O-A S Y n C H$ executed by robot $r_{X} \in\left\{r_{A}, r_{B}\right\}$.

Theorem 3 indicates that Algorithm WO-ASYNCH is almost optimal as it solves rendezvous with trajectories of length $O(N \log N)$, and according to Lemma 1 the relevant lower bound is $\Omega(N)$. In terms of further improvements one could proceed along two different directions. One could try to find a more efficient algorithm for an arbitrary topology, or focus on some restricted classes of graphs. With respect to the latter, as the currently best rendezvous algorithm relies on spanning trees, the restricted cases would likely have to refer to sub-classes of trees. And indeed observe that the results provided in Section 3 for path graphs and star graphs also hold in variant WO.

5 Algorithms for variant $\bar{W} O$

Concerning variant $\bar{W} O$, in [10] one can find a rendezvous algorithm with double exponential (in N) complexity. Here we improve this result in specific classes of graphs.

We start by observing that in this variant it is possible to define a total ordering $\prec^{\bar{W} O}$ on edges in E, where $G=(V, E)$ is the input network. This ordering is defined as follows: edges are ordered by utilising the total ordering of nodes. Formally, given two edges $e^{\prime}=\left(v_{i}, v_{j}\right)$ and $e^{\prime \prime}=\left(v_{i^{\prime}}, v_{j^{\prime}}\right)$ such that $v_{i}<v_{j}$ and $v_{i^{\prime}}<v_{j^{\prime}}$ then $e^{\prime} \prec^{\overline{\mathrm{W}} \mathrm{O}} e^{\prime \prime}$ if and only if (1) $v_{i}<v_{i^{\prime}}$, or (2) $v_{i}=v_{i^{\prime}}$ and $v_{j}<v_{j^{\prime}}$.

Observe that even if we have the total order $\prec^{\bar{W} O}$, in variant $\bar{W} O$ we cannot use the two-steps approach proposed in Section 4. In fact, if we compute again the maximal spanning tree (say T_{X}) of G_{X} by using the Kruskal's according to the reverse ordering of $\prec{ }^{\bar{W} O}$, the required property $T_{A} \subseteq T_{B}$ is not present any longer (it follows from different properties of maps in variants $\bar{W} O$ and WO).

Nevertheless, one can adopt the two-steps approach in special classes of maps, including trees. Algorithm Tree- $\bar{W} O-A S Y N C H$ shown in Fig. 3 can be used to solve rendezvous using trajectories of polynomial length.

Theorem 4. In variant $\overline{\mathrm{W}} \mathrm{O}$, when G is a tree Algorithm TREE- $\overline{\mathrm{W}} \mathrm{O}-\mathrm{ASYNCH}$ allows robots to meet along a trajectory of length $O\left(N^{2}\right)$.

Proof. Since $G_{A} \subseteq G_{B} \subseteq G$ then both G_{A} and G_{B} are trees. Hence, in the remainder, we denote the generic map as T_{X}.

Algorithm Tree- $\bar{W} O$-Asynch computes the following: (1) the size $k_{X}=\left|T_{X}\right|$ of tree T_{X}, (2) the walk $W_{X}=$ $\operatorname{MaKEWALK}\left(T_{X}, s_{X}\right)$, (3) the target t_{X} as the node in V_{X} with maximum order, and (4) the complete walk W_{X}^{+} consisting of $2 k_{X}$ concatenations of W_{X} plus a sub-sequence of W_{X} needed to reach the target t_{X}.

We consider two cases reflecting on the relationship between k_{A} and k_{B}. If $\left|k_{B}\right|>\left|k_{A}\right|$, then walk W_{B} is repeated at least $2\left(k_{A}+1\right)=2 k_{A}+2$ times inside W_{X}^{+}. According to Lemma 9, we have $W_{A} \subseteq 2 \cdot W_{B}$ with W_{A} and W_{B} obtained by Procedure MaKeWalk. This means that we are in the same situation as in the respective case of the proof of Theorem 3, and hence the algorithm ensures that robots eventually meet. If $\left|k_{B}\right|=\left|k_{A}\right|$, the target t_{X} trivially fulfills $t_{A}=t_{B}$ and hence the rendezvous is eventually accomplished.

Concerning the complexity, the trajectory of each robot is of length at most $2 \cdot k_{B} \cdot\left|T_{B}\right|=2 \cdot\left|T_{B}\right| \cdot\left|T_{B}\right|$ resulting in the total complexity $O\left(N^{2}\right)$.

In the remaining, we propose efficient rendezvous algorithms for some other restricted topologies.

Lemma 10. In variant $\bar{W} O$, when G is a cycle one can design an optimal rendezvous algorithm.
Proof. Since G is a cycle and $G_{A} \subseteq G_{B} \subseteq G$ then each map G_{X} is either a path or the whole cycle. The rendezvous algorithm adopts the following strategy.

- If G_{X} is a cycle, robot r_{X} starts at s_{X}, and makes a complete walk in arbitrary direction visiting all nodes before returning to s_{X}. Then, r_{X} walks to the largest in provided order node t_{X}.
- If G_{X} is a path, r_{X} applies the strategy utilised in Lemma 4, i.e., robot r_{X} visits first an arbitrary endpoint of the path, then walks to the opposite endpoint on this path.

It is easy to see that robots do meet eventually, either on the final target node t_{X} or because r_{B} overpasses r_{A}. In both cases, the complexity is bounded by $O(N)$.

Lemma 11. In variant $\overline{\mathrm{W}} \mathrm{O}$, if both G_{A} and G_{B} are complete graphs (or complete bipartite graphs), there exists rendezvous algorithm with the complexity $O\left(N^{3}\right)$.

Proof. Assume that both G_{A} and G_{B} are complete graphs. Each robot r_{X} computes its walk (rendezvous trajectory) W_{X} as follows:

1. Assume robot r_{X} is initially located at $s_{X}=v_{i}$, which becomes a base node.
2. From the current base node v_{i}, r_{X} visits back and forth all its neighbours starting from $v_{n_{X}}$ down to v_{i+2}, and then it moves to the next base node v_{i+1} (in the periodic order);
3. Robot r_{X} repeats the same strategy until all nodes on its map served as base nodes.

On the basis of W_{X}, robot r_{X} computes the complete walk W_{X}^{+}consisting of k_{X} concatenations of W_{X} plus a sub-sequence of W_{X} needed to reach the target node t_{X} which is the largest in the provided order. We now prove that if the two robots visit their own maps adopting W_{X}^{+}, the rendezvous is accomplished. We consider two cases based on the sizes of k_{A} and k_{B}. If $\left|k_{B}\right|>\left|k_{A}\right|$, by construction of W_{X}^{+}we get $W_{A} \subseteq W_{B}$, and due to Lemma 3 rendezvous must be accomplished. If $\left|k_{B}\right|=\left|k_{A}\right|$, the thesis trivially follows since the target t_{X} are the same, $t_{A}=t_{B}$. Since the trajectory of each robot is at most $\left(k_{X}+1\right) \cdot\left|W_{X}\right|$, and $\left|W_{X}\right|=O\left(N^{2}\right)$, the total complexity is $O\left(N^{3}\right)$.

One can observe that the above algorithm can be easily adapted when both G_{A} and G_{B} are complete bipartite graphs.

6 Conclusion

We studied deterministic rendezvous of two asynchronous robots in the network modelled by graphs with restrictions imposed on edges. The restrictions prevent robots from visiting certain parts of the network. We considered four variants based on all possible combinations of presence/absence of two properties: (1) coherent ordering of nodes and (2) weighted robots/edges. We provided some impossibility results, lower bounds, and efficient algorithmic solutions. Two important problems remain open. The first is to establish whether our algorithm in variant WO is optimal. The second is to decide whether there exists a rendezvous algorithm in variant $\overline{\mathrm{W}} \mathrm{O}$ with the polynomial (in N) complexity, or the exponential approach provided in [10] cannot be improved.

References

[1] P. Borowiecki, S. Das, D. Dereniowski, L. Kuszner. Distributed Evacuation in Graphs with Multiple Exits. In Proc. 23rd Int.'l Colloquium on Structural Information and Communication Complexity (SIROCCO), volume 9988 of LNCS, pages 228-241. Springer, 2016.
[2] J. Chalopin, Y. Dieudonné, A. Labourel, and A. Pelc. Fault-tolerant rendezvous in networks. In Proc. 41st Int.'l Colloquium on Automata, Languages, and Programming (ICALP), volume 8573 of LNCS, pages 411-422. Springer, 2014.
[3] J. Chalopin, Y. Dieudonné, A. Labourel, and A. Pelc. Rendezvous in networks in spite of delay faults. Distributed Computing, 29(3):187-205, 2016.
[4] J. Czyzowicz, A. Kosowski, and A. Pelc. How to meet when you forget: log-space rendezvous in arbitrary graphs. Distributed Computing, 25(2):165-178, 2012.
[5] J. Czyzowicz, A. Kosowski, and A. Pelc. Time versus space trade-offs for rendezvous in trees. Distributed Computing, 27(2):95-109, 2014.
[6] J. Czyzowicz, A. Labourel, and A. Pelc. How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms, 8(4):37:1-37:14, 2012.
[7] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U. Vaccaro. Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci., 355(3):315-326, 2006.
[8] A. Dessmark, P. Fraigniaud, and A. Pelc. Deterministic rendezvous in graphs. In Proc. 11th Annual European Symp. on Algorithms (ESA), volume 2832 of LNCS, pages 184-195. Springer, 2003.
[9] Y. DieudonnÃⓒ, A. Pelc, and V. Villain:. How to Meet Asynchronously at Polynomial Cost. SIAM J. Comput. 44(3):844-867, 2015.
[10] A. Farrugia, L. Gasieniec, L. Kuszner, and E. Pacheco. Deterministic rendezvous in restricted graphs. In Proc. 41st Int.'l Conf. on Current Trends in Theory and Practice of Computer Science (SOFSEM), volume 8939 of LNCS, pages 189-200. Springer, 2015.
[11] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory. Theor. Comput. Sci., 621:57-72, 2016.
[12] Z. Gu, Y. Wang, Q.S. Hua, and F.C.M Lau, Blind Rendezvous Problem, Rendezvous in Distributed Systems. Springer, Singapore, 2017.
[13] A. Pelc. Deterministic rendezvous in networks: A comprehensive survey. Networks, 59(3):331-347, 2012.
[14] G. Viglietta. Rendezvous of two robots with visible bits. In Proc. 9th Int.'l Symp. on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, (Algosensors), volume 8243 of LNCS, pages 291-306. Springer, 2013.

Appendix: Figures

W_{1}

Figure 4: Examples of sub-walk: $W_{1}=((1,2),(2,4))$ is a sub-walk of $W_{2}=((1,2),(2,3),(3,2),(2,4))$. Contrary, $W_{1}^{\prime}=((1,2),(2,4))$ is not a sub-walk of $W_{2}^{\prime}=((1,2),(2,3),(3,4))$.

Figure 5: Examples of walks obtained by executing Procedure MaKEWALK:
$W_{A}=((1,3),(3,1),(1,5),(5,1),(1,7),(7,1))$ and $W_{B}=((5,6),(6,5),(5,1),(1,7),(7,1),(1,3),(3,1),(1,5),(5,2),(2,5),(5,4),(4,5))$. Notice that
$2 \cdot W_{B}=((5,6),(6,5),(5,1),(1,7),(7,1),(\mathbf{1 , 3}),(\mathbf{3}, \mathbf{1}),(\mathbf{1 , 5}),(5,2),(2,5),(5,4),(4,5),(5,6),(6,5),(\mathbf{5}, \mathbf{1}),(\mathbf{1}, \mathbf{7}),(\mathbf{7}, \mathbf{1}),(1,3)$, $(3,1),(1,5),(5,2),(2,5),(5,4),(4,5))$, and the sequence of edges forming W_{A} is highlighted in boldface inside $2 \cdot W_{B}$.

Figure 6: Visualisation of arguments used in Theorem 3. We assume that $w_{1}<w_{2}<w_{3}<w_{4}$ are four possible edge weights, and in the picture $T_{i}, 1 \leq i \leq 4$, represents a tree containing edges with weights $w_{i}, w_{i+1}, \ldots, w_{4}$ only. Hence, $T_{4} \subset T_{3} \subset T_{2} \subset T_{1}$.

