
Asynchronous Rendezvous with Different Maps

Serafino Cicerone Gabriele Di Stefano Leszek Gąsieniec Alfredo Navarra

Abstract

This paper provides a study on the rendezvous problem in which two anonymous mobile entities referred to as robots
rA and rB are asked to meet at an arbitrary node of a graph G = (V,E). As opposed to more standard assumptions
robots may not be able to visit the entire graph G. Namely, each robot has its own map which is a connected subgraph of
G. Such mobility restrictions may be dictated by the topological properties combined with the intrinsic characteristics
of robots preventing them from visiting certain edges in E.

We consider four different variants of the rendezvous problem introduced in [Farrugia et al., SOFSEM’15] which
reflect on restricted maneuverability and navigation ability of rA and rB in G. In the latter, the focus is on models in
which robots’ actions are synchronised. The authors prove that one of the maps must be a subgraph of the other. I.e.,
without this assumption (or some extra knowledge) the rendezvous problem does not have a feasible solution. In this
paper, while we keep the containment assumption, we focus on asynchronous robots and the relevant bounds in the four
considered variants. We provide some impossibility results and almost tight lower and upper bounds when the solutions
are possible.

1 Introduction
The Rendezvous problem comprises the task of meeting two anonymous mobile robots which start at different nodes
of a graph or different locations in the Euclidean space. Many variants (with different assumptions) of rendezvous
have been studied in the past. An exhaustive survey on the problem can be found in [13], and some further advances
in [2, 3, 4, 5, 9, 11, 14]. In this paper, we are interested in the design of deterministic algorithms for asynchronous
robots moving across edges in the underlying graph of network connections. The deterministic and asynchronous
variant of rendezvous in graphs has been first introduced in [7]. Later in [6], the problem has been fully characterised
and the adopted model utilised the minimal setting under which the rendezvous can be accomplished. The authors
of [6] give also the answer to the question posed in [7] whether there exists a deterministic algorithm for rendezvous
of two asynchronous robots in any finite connected graph without knowing any upper bound on its size. The minimal
assumptions to enable rendezvous include:

• The input anonymous graph has no labels on points. Instead, at each node of degree d, the relevant end points of
incident edges are sorted and labelled by port numbers 1, . . ., d. The local labelling of ports at each node is fixed,
i.e., every robot sees the same local labelling. However, no coherence between local labellings is assumed. I.e.,
one edge can have two different port numbers at its opposite ends. When a robot leaves a node, it is aware of the
port number by which it leaves and when it enters a node, it is aware of the entry port number. It can also verify,
at each node, whether a given positive integer is a port number at this node.

• Each robot has a unique ID, however, it does not know the ID of the other robot.

• Robots can meet on nodes or along edges, i.e., forcing robots to meet on nodes may prevent them from rendezvous.

In the model described above robots do not know G nor the initial distance between them in G. They cannot
mark neither the nodes nor the edges. Rendezvous has to be accomplished for any local labelling of ports. The robots
terminate their walks at the time of meeting one another. The rendezvous algorithm works also for infinite graphs. In
fact, in finite graph the resolution of the rendezvous is often trivial or it can be reduced to the graph exploration problem.
For example, utilising search methods proposed in [8] one can force to meet the two robots in finite tree. Namely, the
rendezvous can be easily reached once both robots discover the centre(s) of the tree.

In this paper, however, we are interested in a different model in which robots have no IDs and most importantly they
may not be allowed to access the whole graph. The roaming space of each robot is limited to a specific subsets of nodes

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/227453318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and edges. The reasons to adopt such restriction may vary, however, the restriction itself is natural and was used earlier,
e.g., in the evacuation problem [1] where an entity may represent a disabled person not able to adopt steep stairs or an
escalator.

The rendezvous problem with heterogeneous (different accessibility restrictions) entities was formally introduced
in [10] under the name of rendezvous with different maps. In the most general variant two asynchronous and anonymous
robots rA and rB provided with two different maps GA and GB , both isomorphic to (possibly different) subgraphs G′A
and G′B of the finite input graph G. The meeting can happen only on nodes but it is assumed that traversal of edges is
mutually exclusive. This assumption is equivalent to the one used in [6], where robots can also meet on edges.

The main difference between the standard rendezvous problem studied, e.g., in [6] and the rendezvous with different
maps studied here is in the way robots build their trajectories. In particular, in the latter the robots do not have to
construct their maps (discover reachable nodes and edges). The maps are provided to them beforehand and the relevant
trajectories can be precomputed prior to the actual search stage. This is in contrast to the model utilised in [6] where the
trajectory of a robot is computed “on-the-go” on the basis of the current local information about port numbers, node
degrees and the ID. Thus the main difficulty in the model adopted here refers to inconsistency of the maps provided to
the robots in which one robot may not be able to access certain nodes or edges reachable for the other. Similar challenges
occur also in blind rendezvous [12].

According to [10] without some extra information (e.g., node IDs) rendezvous with maps cannot be accomplished if
G′A 6⊆ G′B , where rA is the robot with the smaller map. Thus here we also assume G′A ⊆ G′B . In contrast to [10], we
focus solely on asynchronous robots. We study four natural variants of the rendezvous with different maps, combining
two natural assumptions/properties considered in [10]: (1) availability of relative (with no explicit labels) ordering of
nodes, and (2) presence of robot weights vs edge weight tolerance. The four variants are determined by the presence (or
absence) of these two properties. We also discuss two hierarchies (that share the bottom and the top levels) formed by
the four studied variants of the problem. At the top level of these hierarchies we assume presence of both properties. In
the middle we have two incomparable levels where only one property is present. Finally at the bottom level we consider
the absence of both properties.

We provide both the lower and the upper bounds with respect to the considered variants. We show that at the bottom
level of the hierarchies very little can be done w.r.t. the rendezvous problem. In particular, the absence of the two
properties makes the problem unsolvable in G with an arbitrary topology, and is tractable only in the case of simple
topologies including paths and stars. We also show that in the two intermediate (and incomparable) variants rendezvous
can be efficiently concluded in cycles and trees (the robots cannot rendezvous in cycles at the bottom level). Finally, we
propose efficient (in terms of moves made) algorithm for the upper level requiring only O(N logN) steps. This result is
almost tight in view of the natural lower bound of Ω(N), where N denotes the cumulative number of vertices of the two
maps G′A and G′B .

Due to space limitations, figures are moved to Appendix.

2 Model
We start with a summary and further extension of the computation model introduced in [10]. We consider rendezvous
of anonymous (and indistinguishable with respect to the control mechanism) robots in networks modelled by finite
undirected graphs. The network G = (V,E) is a simple connected graph, where |V | = n and |E| = m. The two
robots rA and rB initiate search at different starting nodes sA 6= sB in G. Each robot rX ∈ {rA, rB} has its own
map GX = (VX , EX) which is isomorphic to a specific subgraph G′X = (V ′X , E′X) of G induced by the sets of nodes
V ′X and edges E′X reachable from sX by robot rX . In particular, the matching between the map of rX and G′X is
deterministic and known to rX . We emphasise that each robot rX only knows its own map GX and the starting node
sX . In other words rA has no knowledge of GB and sB , and vice versa. Moreover, during search rA cannot adopt edges
outside of its map GA and its trajectory is oblivious w.r.t. to the knowledge possessed by rB . Note that, once rX has
computed its trajectory on its map, by the above assumptions, it can move on G′X consistently, without ambiguities.

Let nX = |VX | be the number of nodes of map GX , mX = |EX | be the number of edges of GX , while by N and
M we denote nA + nB and mA + mB , respectively. Finally, given a node v ∈ V , the set of its neighbours is denoted
by NG(v) = {v′ | (v, v′) ∈ E}.

We assume that the robots act in asynchronous fashion. Each robot computes its trajectory, the sequence of visited
nodes and edges, independently and prior to the actual search. We assume that the use of edges is exclusive, i.e., two
robots cannot be located (move in either directions) on the same edge at any time. When the robot is ready to move

2

along a chosen edge it awaits the relevant “green light” signal (meaning the edge is now available) from the system. In
consequence, rendezvous is possible only on nodes when one robot is immobilised indefinitely or awaits access of an
edge through which the other robot is approaching. The time required to move across an edge is assumed to be finite but
unbounded. In turn, as the complexity of the solution we adopt the sum of the lengths of the robots’ trajectories before
rendezvous, i.e., the number of edges traversed in total.

In what follows we formalise four different variants of rendezvous with different maps. Each variant is determined
by the availability of extra knowledge O and W (for the definition see below) w.r.t. the maps. For all considered variants,
we assume that G′A is a subgraph of G′B . Otherwise, as already indicated, the rendezvous problem with different maps
may not have a solution [10].

• Property O: the nodes of G are totally ordered. In particular, if V = {v1, v2, . . . , vn} then vi < vi+1, for all
i = 1, 2, . . . , n− 1. We say that Property O holds if this order is consistent with the order of nodes observed by
robot rX in GX . That is, if VX = {vX1 , vX2 , . . . , vXnX

}, vXp = vi, and vXq = vj , where vi, vj ∈ V and i < j, we
also get vXp < vXq .

• Property W: each robot rX ∈ {rA, rB} has an associated weight wX ∈ R+, and each edge e ∈ E can tolerate
weights up to the limit w(e) ∈ R+. In this setting let HX denote the (possibly disconnected) subgraph of G
induced by edges e ∈ E such that w(e) ≥ wX . Then G′X is the connected component of HX which contains sX .
We assume that the maps GX = (VX , EX) contains information about the weights tolerated by the relevant edges
(where w(eX) = w(e), for each eX ∈ EX represents the edge e ∈ E).

We consider four variants based on properties O and W:

• WO variant, where both properties O and W hold,

• WO variant, where only O holds,

• WO variant, where only W holds,

• WO variant, where neither O nor W holds.

By slightly abusing our notation the codes WO, WO, WO, and WO will be used not only to define the variants of the
problem, but also the set of instances of the relevant variants. For example, WO will refer to all instances of rendezvous
with different maps where each robot rX knows: (1) its weighted map GX , (2) the starting point sX , and (3) it is aware
that its node ordering is consistent with the node ordering of the other robot. Using this notation one can define a
relationship v between the elements of V = {WO,WO,WO,WO}. For example, WO v WO means that for each
instance i ∈WO it is possible to identify a set I ⊆WO of instances induced by i as follows: if i = (GA, sA, GB , sB),
then each instance in I is obtained from i by maintaining (GA, sA, GB , sB) and by adding any possible consistent
ordering on nodes of GA and GB . One can observe that such relationship defines two hierarchies: WO vWO vWO
and WO vWO vWO. The following holds.

Remark 1. Let V1,V2 ∈ V such that V1 v V2. If i ∈ V1 and I ⊆ V2 is the set of instances induced by i, then:

• if i is solvable in V1, then each induced instance in I is solvable in V2;

• if all the instances in I are unsolvable in V2, then i is unsolvable in V1.

In the remaining part of the paper we propose and analyse algorithmic solutions for the rendezvous problem with
different maps. Our algorithms assume each robot rX has the input map GX and the initial position sX . The output of
an algorithm refers the rendezvous trajectory computed by each rX on GX . The complexity of the solution is defined as
the sum of the lengths of trajectories adopted by both robots until rendezvous takes place. For the sake of simplicity,
knowing that GX and G′X are isomorphic and that rX is aware of the isomorphism, in the following we always write
GX rather than G′X even when we refer to the moves along edges in G′X and the properties of G′X .

3 Preliminary results
In this section we provide a general lower bound holding for all variants, and a more restrictive one which does not
hold only for WO. Then we present a sufficient condition for solving the rendezvous problem that will be exploited
successively by our resolution algorithms for variants WO and WO. Finally, we provide optimal algorithms and
infeasibility results for maps with specific topologies in the weaker variants WO and WO.

3

3.1 Lower bounds
The following lemma provides a lower bound on the length of the trajectory performed by robots in any solving algorithm
with respect to the WO variant.

Lemma 1. In variant WO, rendezvous requires use of trajectories of length Ω(N).

Proof. Consider an instance of the problem where nA = 1. Then, any rendezvous algorithm is stuck with rA
immobilised in the starting node sA. Since rB has no knowledge of the position of rA, in the worst case it has to move
throughout all the nodes of its map.

Thus by Remark 1 and Lemma 1 the lower bound Ω(N) applies also in any variant in V.

Lemma 2. In variants WO and WO rendezvous requires use of trajectories of length Ω(M).

Proof. Recall first that neither in variant WO nor in WO robots have enough information to meet in (agreed in advance)
target node for their meeting.

In variant WO consider the case in which the map of rB is formed of mB = Ω(n2
B) edges and the map of rA is a

single edge e = {v1, v2}. According to Lemma 1, any rendezvous algorithm A must force robots to visit all nodes in
their map. Thus also rA has to visit both nodes v1 and v2 by traversing the only edge at most once. If rB traverses only
o(mB) edges and stops, the adversary picks e among edges not traversed by rB with the endpoints different to the node
where rB rests eventually. This is possible if the map of rB is dense enough. During rendezvous, rA is allowed first to
access e and is kept there until rB stops. Since the final node on rB’s trajectory is different to v1 and v2 rendezvous is
not reached. In the complementary case, i.e., when rB visits its whole map we assume that e is the last edge visited by
rB . Here also the adversary allows rA to enter this edge first where rA waits until rB comes to visit this edge. This will
force rB to visit Ω(mb) = Ω(M) edges.

In variant WO consider a 3-layer graph G = (V,E), where the set of nodes V is partitioned into three subsets V1,
V2 and V3 of the same size n

3 . Also the set of edges is partitioned into E1 and E2, such that graphs (V1 ∪ V2, E1) and
(V2 ∪ V3, E2) are complete bipartite graphs. We also assume that edge tolerance within each set Ei, for i = 1, 2, is
uniform, however, edges in E2 tolerate wA but those in E1 don’t. In contrast, all edges in E tolerate wB . Assume also
that sA ∈ V2 and sB ∈ V1.

By Lemma 1, rX cannot stay in sX . Let e be the edge rA traverses first. The adversary temporarily entraps rA
on e. If the trajectory computed by rB is of length at least Ω(n2), due to the uniform weight tolerance on edges in
E2 the adversary can pick e, s.t., occurs on rB’s trajectory only after Ω(n2) steps. In the complementary case, when
the trajectory of rB is of length o(n2), the adversary picks e outside of the trajectory of rB . In this case the adversary
instructs rB to move first entrapping it in the last edge e′ of its trajectory. If the protocol for rA is perpetual or of length
Ω(n2) due to uniformity of edges the adversary can force this protocol to walk Ω(n2) edges before entering e′, and the
rendezvous takes place only if e′ ∈ E2. If the protocol for rA is of length o(n2) the adversary keeps rB away from e′

and stops at its destination node v. Finally, rV is released to finish walk at v′. As the robots cannot agree in advance to
meet on the same target node, i.e., v 6= v′, there is no rendezvous in this case.

It follows from Lemma 2 that in variants WO and WO (and by Remark 1 also in WO) any algorithm has to move
robots through all edges of their respective maps. Whereas, in variant WO this is not true as robots could exploit
knowledge about nodes’ ordering and edges’ weight tolerance.

3.2 A sufficient condition for solving rendezvous
In this section we provide a sufficient condition for solving rendezvous with different maps. We first formalise
concepts of walks and sub-walks in a graph (cf Fig. 4). A walk in a graph G is an ordered sequence of edges of G,
W = ((vi1 , vi2), (vi2 , vi3), . . . , (vik−1

, vik)), where the second node of an edge is the first node of the subsequent edge;
in W , vi1 is the starting node and vik is the final node. By |W |, we denote the number of edges forming W . Given two
walks W ′ and W ′′ in G, we write W ′ ⊆W ′′ when W ′ is a sub-walk of W ′′, i.e., W ′ is a (not necessarily contiguous)
sub-sequence of edges in W ′′. If a walk W contains all edges of G then it is called a complete walk of G.

Lemma 3. Let WX be a complete walk of map GX which starts in sX . If WA ⊆WB , then the rendezvous is solvable
even in variant WO.

4

Proof. An algorithmA can solve the rendezvous as follows: move robot rX along walk WX starting at sX and finishing
in the final node of WX , unless the rendezvous is accomplished earlier. Since WA ⊆WB , robot rB has to visit all edges
in WA in the same order as robot rA does. Thus no adversary can force rB to overpass rA on WA despite actions of
robots being asynchronous.

3.3 On the complexity of the rendezvous problem in variants WO and WO

We start the discussion of rendezvous with different maps in variant WO.
As already discussed, one can find in [6] full characterisation of the standard asynchronous rendezvous problem,

including the minimal assumptions under which the rendezvous can be accomplished. These include (1) consistent
port numbering for the two maps, (2) unique IDs of robots, and (3) meeting allowed at nodes and edges. Consider now
variant WO variant with an instance in which GA = GB . In such case, one can claim that “rendezvous with different
maps” is equivalent to “standard rendezvous problem” when neither port numbering nor node IDs are provided.

Thus using the argument above and [6] we get the following theorem.

Theorem 1. In variant WO rendezvous is not feasible.

Note that rendezvous can be obtained in more specific topologies. We discuss some cases below. It is worth to
mention that the rendezvous algorithm for trees sketched in the introduction does not work when different maps are in
use, as the centres computed for different maps may not coincide.

Lemma 4. In variant WO, if network G is a path rendezvous can be solved optimally.

Proof. Since GA ⊆ GB ⊆ G, also both GA and GB are paths. Each robot adopts the following strategy: from the
starting node sX , go to an arbitrary endpoint of the path and then walk along all the edges to reach the other endpoint.
Due to the linear structure of the maps and inclusion assumption the robots must eventually meet. The complexity of
rendezvous is trivially bounded by O(N), and it is optimal in view of the lower bound from Lemma 1.

Lemma 5. In variant WO, if network G is a star graph rendezvous can be solved optimally.

Proof. As GA ⊆ GB ⊆ G then each of GA and GB can be a star, a single edge, or just a node. Each robot adopts the
following strategy: from the starting node sX , visit each leaf, and finally stop at the centre. In the degenerate case of a
single edge, the robot can arbitrarily choose one node as the centre and apply the same strategy. If GA is a node, the
robot cannot move. Observe that either robots meet at a non-central node while attempting to enter the same edge, or
they meet in the centre of the star, eventually. The complexity refers to a single traversal of the star and is bounded by
O(N).

The next result affirms that in case the input map is a cycle the rendezvous problem cannot be solved in the WO
variant. In fact, cycles will play the central role in discussion on how the rendezvous complexity changes in the relevant
variants.

Lemma 6. In variant WO, if G is a cycle rendezvous cannot be resolved.

Proof. Consider the case with GA = GB both being a cycle with an even number of nodes. Assume an instance where
the two robots lie at some antipodal nodes of the cycle. The adversary can force a symmetric behaviour of the two robots.
That is, whatever one robot does according to the provided algorithm, the other makes exactly the same symmetric move.
As robots are always located at some antipodal positions the meeting will never take place.

Consider now the subset I ⊆WO containing all instances with GA = GB . If I ′ ⊂WO contains all instances with
wA = wB drawn from I , we conclude using Theorem 1 that also in variant WO rendezvous is not always feasible.

Theorem 2. In variant WO rendezvous with maps is not always feasible.

The following lemma provides a feasibility results for variant WO when wA < wB and the topology of G is
restricted to cycles.

Lemma 7. In variant WO, if G is a cycle and wA < wB then there exists an algorithm that allows robots to meet along
walks of length O(N · |bA|), where bX is the binary representation of weight wX .

5

Proof. Since G is a cycle and GA ⊆ GB ⊆ G then GX is either a path or a cycle.
If GX is a path then rX applies the strategy provided in the proof of Lemma 4: from sX , rX goes to an arbitrary

endpoint of the path and then walk along all the edges to reach the other endpoint. If GX is a cycle, the algorithm
works as follows. Consider the binary representation bX of wX . Initially, robot rX traverses the whole cycle (returning
to sX) in any direction; then, for each bit of bX and starting from the least significant bit: if the current bit is 1, the
robot performs a complete visit of the cycle in one direction, if the bit is 0, then the robot does the same in the opposite
direction.

If GA is a path, the two robots meet within the first two visits of the cycle made by rB , hence with a trajectory of
length at most 2N . If GA is a cycle and wA < wB , the two trajectories differ as either (1) bA and bB have different sizes
or (2) they differ for on least one bit. In the first case, rB traverses G more times than rA if they do not meet before, so
they must meet eventually. In the second case, they robots traverse the cycle in the opposite directions at least once, and
this is enough to force their meeting. The complexity of this algorithm is O(N · |bA|), as |bA| ≤ |bB |.

4 A O(N logN) algorithm for variant WO

In [10], the authors define an algorithm for the case of synchronous robots that solves the rendezvous in variant WO
utilising trajectories of length O(N). A similar technique for asynchronous robots leads to trajectories of length O(N2).
In what follows we propose a novel algorithm for asynchronous robots with the complexity O(N logN). The new
algorithm is based on new techniques an it requires better understanding of the considered problem.

We start by observing that in variant WO one can define the total order ≺WO on edges in E, where G = (V,E) is
the input network. This ordering is defined as follows: edges are first ordered according to their (increasing) weights,
and in case of ties edges with smaller endpoints are earlier in the order. Formally, given two edges e′ = (vi, vj) and
e′′ = (vi′ , vj′) then e′ ≺WO e′′ if and only if (1) w(e′) < w(e′′), or (2) w(e′) = w(e′′) and min(i, j) < min(i′, j′).

Let E = {e1, e2, . . . , em} where ei ≺WO ei+1, for each i = 1, 2, . . . ,m− 1 (i.e., indeces are consistent with the
order ≺WO). Hence, if G(i) is the subgraph of G induced by edges ei, ei+1, . . . , em, the following properties hold: (1)
G(i) may be disconnected, and (2) G(i + 1) is a subgraph of G(i).

Notice that the same notation adopted for elements of E is used to refer to edges in a map GX , that is, if
EX = {eX1 , eX2 , . . . , eXmX

}, then eXi ≺WO eXi+1 for each i = 1, 2, . . . ,mX − 1.
We now introduce a rendezvous method called two-steps approach. In the first step, a rendezvous algorithm A

reduces the search space by computing a convenient sub-map HX ⊆ GX . In the second, A instruct each robots to meet
inside HX .

The intuition behind this approach is the smaller/simpler the search space, rendezvous becomes more efficient.
According to Lemma 1, HX must contain all nX nodes of GX , thus the search space reduction can only affect edges
from GX . Also, since HX must be connected, it contains at least nX − 1 edges in the form of a spanning tree of GX .

The search space reduction in variant WO is given below. Please note, this method cannot be used in the other three
variants since it relies on order ≺WO allowing to create the spanning tree TX .

Definition 1. Consider variant WO with maps GX . Denote by TX the maximal spanning tree of GX obtained by
Kruskal’s algorithm, where edges are drawn in the reverse order to ≺WO.

The following lemma determines a relationship between the maximal spanning trees TA and TB .

Lemma 8. TA is a subtree of TB .

Proof. In this variant EA ⊆ EB . Moreover, if there exists an edge e ∈ TB whose endpoints are both in VA but e 6∈ TA,
then for any e′ ∈ TA we have e ≺WO e′. Thus by applying the Kruskal’s algorithm according to the reverse order to
≺WO, all edges selected in TA will be also edges of TB .

In Fig. 1 we present a pseudo-code of procedure MAKEWALK adopting complete walk along edges of tree TX . In
particular, given TX and a starting node sX , by calling MAKEWALK(TX , sX) we obtain a walk WX that starts at sX ,
passes through all the edges of the tree (in each direction in the form of well defined Euler tour), and finishes at sX . This
property is crucial for any rendezvous algorithm based on traversing TX several times. The following lemma provides a
useful relationship between WA and WB . An example of application of procedure MAKEWALK is shown in Fig. 5.

Lemma 9. Let WA = MAKEWALK(TA, sA), and WB = MAKEWALK(TB , sB). Then, WA ⊆ 2 ·WB , where 2 ·WB

is the concatenation of two occurrences of WB .

6

Procedure: MAKEWALK
Input :Tree TX , initial robot’s position sX
Output :A walk W starting at sX and passing through all nodes in TX .

1 Let NTX
(sX) = {vi1 , vi2 , . . . , vik}, such that i1 < i2 < . . . < ik ;

2 W = list() ; // W is initialised as an empty list
3 for 1 ≤ j ≤ k do
4 Let e = (sX , vij) ;
5 W.append(e).concat(MAKESUBWALK(TX , vij , sX));

6 return W ;

Procedure: MAKESUBWALK
Input :Tree TX , current node s, previous node f ∈ NTX

(s)
Output :A closed walk W starting and finishing in s, passing through all nodes in TX \ Tf , where Tf is the

maximal subtree of TX rooted at f .

1 Let NTX
(s) = {vi1 , vi2 , . . . , vik}, such that i1 < i2 < . . . < ik ;

2 Let succ(vij) =

{
vij+1 if j < k
vi1 otherwise

3 Let next = succ(f);
4 Let e′ = (s,next) and e′′ = (s, f);
5 W = list(e′) ; // W is initialised as a list containing just e′

6 for k − 1 times do
7 W.concat(MAKESUBWALK(TX ,next , s)).append(e′′);
8 next = succ(next);

9 return W ;

Figure 1: Procedure MAKEWALK executed by robot rX ∈ {rA, rB} starting on node sX of TX . The requested walk
WX starting from and ending at the initial robot’s position sX , and containing all edges in TX is obtained by exploiting
the recursive Procedure MAKESUBWALK.

Proof. Assume first sA = sB . From Lemma 8 we have that TA ⊆ TB . Procedure MAKEWALK ensures that also
the ordered tree TA is a subtree of the ordered tree TB , that is, nodes in the walks maintain their relative ordering.
It follows that WA ⊆ WB . Since in general sA 6= sB and the length of WX is 2nX − 3, then WB may contain a
suffix (vAj , v

A
j+1), (vAj+1, v

A
j+2), . . . , (vA2nA−4), vA2nA−3) of WA before its prefix (vA1 , v

A
2), (vA2 , v

A
3), . . . , (vAj−2, v

A
j−1),

for some 1 < j < 2nA − 2. However, by traversing WB twice, we can guarantee rendezvous by visiting WA in the
right order at least once.

Algorithm WO-ASYNCH (cf Fig. 2) exploits Procedure MAKEWALK to build complete walks that fulfill condition
of Lemma 9. The following theorem states that rendezvous in variant WO can be solved with complexity O(N logN),
for the input network G with an arbitrary topology.

Theorem 3. In variant WO, for any network G, Algorithm WO-ASYNCH guarantees rendezvous along a trajectory of
length O(N logN).

Proof. Algorithm WO-ASYNCH can be divided into four parts: (1) in the first two lines the spanning tree TX is computed
along with its integer logarithmic size (i.e., kX = dlog |TX |e), (2) Line 4, where the walk WX = MAKEWALK(TX , sX)
is computed, (3) the block of Lines 5–14, where a target tX is computed, and (4) block of Lines 15–18, where the
complete walk W+

X is computed and performed. Such a walk W+
X consists of 2kX concatenations of WX plus a

sub-sequence of WX (i.e., the final step) needed to reach the target tX . We now analyze two cases, according to the
sizes kA and kB .

• Case kB > kA. We show that W+
A is a sub-walk of W+

B , and hence from Lemma 3 the claim holds. In W+
A the

sequence WA is repeated 2kA times plus a subsequence of WA (due to the final step). In W+
B , the sequence WB

is repeated 2kB ≥ 2(kA + 1) times, which is at least 2kA + 2 times. From Lemma 9, the first two repetitions of

7

Algorithm: WO-ASYNCH
Input :Map GX = (VX , EX), starting node sX , robot’s weight wX

/* Part (1): compute TX and its integer logarithmic size */
1 compute the maximal spanning tree TX (by using the ordering ≺WO);
2 if |TX | == 1 then exit ;
3 let kX = dlog |TX |e ;
/* Part (2): compute walk WX */

4 let WX = MAKEWALK(TX , sX) ;
/* Part (3): compute target tX */

5 let iX = argmini{w(eXi) | eXi ∈ TX} ;
6 let j = nil ;
7 foreach i in (iX + 1, iX + 2, . . . ,mX), in order do
8 let T (i) be a largest subtree of TX induced by nodes in G(i) ;
9 if kX > dlog |T (i)|e then

10 j = i− 1 ;
11 break

12 if j == nil then j = mX ;
13 let e be any edge in T (j) having maximum order ;
14 let tX be the endpoint of e with largest index ;
/* Part (4): compute walk W+

X by using WX and tX */
15 while not (WX has been fully traversed 2 · kX times ∨ rendezvous is accomplished) do
16 traverse the next edge in WX

17 while not (rX is on tX ∨ rendezvous is accomplished) do
18 traverse the next edge in WX

Figure 2: Algorithm WO-ASYNCH executed by robot rX ∈ {rA, rB}.

WB assure that WA is contained in 2WB , that is a subsequence of W+
B . It follows that 2kA + 2 sequences of

WB include 2kA + 1 sequences of WA. Since W+
A is a subsequence of 2kA + 1 repetitions of WA, then W+

A is
contained in W+

B .

• Case kB = kA. We show that robots rA and rB can select a common node tX to rendezvous. When rB executes
Part (3) of the algorithm it computes a tree denoted as T (j), which corresponds to the smallest subtree of TB

having size kB . For rB , tree T (j) represents TA according to the assumption kB = kA. For instance, in Fig. 6,
T1 represents TB and T3 represents T (j) = TA. We now prove that there is exactly one occurrence of TA in TB ,
and the following relationships hold:

– |TB | ≥ |TA|;
– dlog(|TB |)e = dlog(|TA|)e.

Denoting by n the integer value dlog(|TB |)e = dlog(|TA|)e we can represent log(|TB |) and log(|TB |) as follows:

log(|TB |) = (n− 1) + b, log(|TA|) = (n− 1) + a, with 0 < a < b ≤ 1.

One can observe that log(|TB |)−log(|TA|) = b−a < 1, which in turns implies log(|TB |/|TA|) < 1, |TB |/|TA| <
2, and finally the required relationship |TB | < 2|TA|. This relationship implies that if rB selects at Lines 13
and 14 the largest in order edge e belonging to T (j), and node tX as the endpoint of e with the largest index, then
the same target node will be selected by both rA and rB (i.e., tA = tB).

Summarising, if kB > kA, the algorithm forces robots to meet during the 2kB repetitions of walk WB . And if
kB = kA, the algorithm forces robots to meet at tA = tB . Concerning the complexity, the trajectory of each robot is of
length at most 2 · kB · |TB | = 2 · dlog |TB |e · |TB |. Thus the total complexity of rendezvous is O(N logN).

8

Algorithm: TREE-WO-ASYNCH
Input :Map defined by the tree TX = (VX , EX), starting node sX

1 let kX = |TX | ;
2 let WX = MAKEWALK(TX , sX) ;
3 let tX be the node in VX with maximum order ;
4 while not (WX has been fully traversed 2 · kX times ∨ rendezvous is accomplished) do
5 traverse the next edge in WX

6 while not (rX is on tX ∨ rendezvous is accomplished) do
7 traverse the next edge in WX

Figure 3: Algorithm TREE-WO-ASYNCH executed by robot rX ∈ {rA, rB}.

Theorem 3 indicates that Algorithm WO-ASYNCH is almost optimal as it solves rendezvous with trajectories of
length O(N logN), and according to Lemma 1 the relevant lower bound is Ω(N). In terms of further improvements one
could proceed along two different directions. One could try to find a more efficient algorithm for an arbitrary topology,
or focus on some restricted classes of graphs. With respect to the latter, as the currently best rendezvous algorithm relies
on spanning trees, the restricted cases would likely have to refer to sub-classes of trees. And indeed observe that the
results provided in Section 3 for path graphs and star graphs also hold in variant WO.

5 Algorithms for variant WO

Concerning variant WO, in [10] one can find a rendezvous algorithm with double exponential (in N) complexity. Here
we improve this result in specific classes of graphs.

We start by observing that in this variant it is possible to define a total ordering ≺WO on edges in E, where
G = (V,E) is the input network. This ordering is defined as follows: edges are ordered by utilising the total ordering of
nodes. Formally, given two edges e′ = (vi, vj) and e′′ = (vi′ , vj′) such that vi < vj and vi′ < vj′ then e′ ≺WO e′′ if
and only if (1) vi < vi′ , or (2) vi = vi′ and vj < vj′ .

Observe that even if we have the total order ≺WO, in variant WO we cannot use the two-steps approach proposed in
Section 4. In fact, if we compute again the maximal spanning tree (say TX) of GX by using the Kruskal’s according
to the reverse ordering of ≺WO, the required property TA ⊆ TB is not present any longer (it follows from different
properties of maps in variants WO and WO).

Nevertheless, one can adopt the two-steps approach in special classes of maps, including trees. Algorithm
TREE-WO-ASYNCH shown in Fig. 3 can be used to solve rendezvous using trajectories of polynomial length.

Theorem 4. In variant WO, when G is a tree Algorithm TREE-WO-ASYNCH allows robots to meet along a trajectory
of length O(N2).

Proof. Since GA ⊆ GB ⊆ G then both GA and GB are trees. Hence, in the remainder, we denote the generic map as
TX .

Algorithm TREE-WO-ASYNCH computes the following: (1) the size kX = |TX | of tree TX , (2) the walk WX =
MAKEWALK(TX , sX), (3) the target tX as the node in VX with maximum order, and (4) the complete walk W+

X

consisting of 2kX concatenations of WX plus a sub-sequence of WX needed to reach the target tX .
We consider two cases reflecting on the relationship between kA and kB . If |kB | > |kA|, then walk WB is repeated

at least 2(kA + 1) = 2kA + 2 times inside W+
X . According to Lemma 9, we have WA ⊆ 2 ·WB with WA and WB

obtained by Procedure MAKEWALK. This means that we are in the same situation as in the respective case of the proof
of Theorem 3, and hence the algorithm ensures that robots eventually meet. If |kB | = |kA|, the target tX trivially fulfills
tA = tB and hence the rendezvous is eventually accomplished.

Concerning the complexity, the trajectory of each robot is of length at most 2 · kB · |TB | = 2 · |TB | · |TB | resulting
in the total complexity O(N2).

In the remaining, we propose efficient rendezvous algorithms for some other restricted topologies.

9

Lemma 10. In variant WO, when G is a cycle one can design an optimal rendezvous algorithm.

Proof. Since G is a cycle and GA ⊆ GB ⊆ G then each map GX is either a path or the whole cycle. The rendezvous
algorithm adopts the following strategy.

• If GX is a cycle, robot rX starts at sX , and makes a complete walk in arbitrary direction visiting all nodes before
returning to sX . Then, rX walks to the largest in provided order node tX .

• If GX is a path, rX applies the strategy utilised in Lemma 4, i.e., robot rX visits first an arbitrary endpoint of the
path, then walks to the opposite endpoint on this path.

It is easy to see that robots do meet eventually, either on the final target node tX or because rB overpasses rA. In
both cases, the complexity is bounded by O(N).

Lemma 11. In variant WO, if both GA and GB are complete graphs (or complete bipartite graphs), there exists
rendezvous algorithm with the complexity O(N3).

Proof. Assume that both GA and GB are complete graphs. Each robot rX computes its walk (rendezvous trajectory)
WX as follows:

1. Assume robot rX is initially located at sX = vi, which becomes a base node.

2. From the current base node vi, rX visits back and forth all its neighbours starting from vnX
down to vi+2, and

then it moves to the next base node vi+1 (in the periodic order);

3. Robot rX repeats the same strategy until all nodes on its map served as base nodes.

On the basis of WX , robot rX computes the complete walk W+
X consisting of kX concatenations of WX plus a

sub-sequence of WX needed to reach the target node tX which is the largest in the provided order. We now prove that if
the two robots visit their own maps adopting W+

X , the rendezvous is accomplished. We consider two cases based on
the sizes of kA and kB . If |kB | > |kA|, by construction of W+

X we get WA ⊆ WB , and due to Lemma 3 rendezvous
must be accomplished. If |kB | = |kA|, the thesis trivially follows since the target tX are the same, tA = tB . Since the
trajectory of each robot is at most (kX + 1) · |WX |, and |WX | = O(N2), the total complexity is O(N3).

One can observe that the above algorithm can be easily adapted when both GA and GB are complete bipartite
graphs.

6 Conclusion
We studied deterministic rendezvous of two asynchronous robots in the network modelled by graphs with restrictions
imposed on edges. The restrictions prevent robots from visiting certain parts of the network. We considered four
variants based on all possible combinations of presence/absence of two properties: (1) coherent ordering of nodes and
(2) weighted robots/edges. We provided some impossibility results, lower bounds, and efficient algorithmic solutions.
Two important problems remain open. The first is to establish whether our algorithm in variant WO is optimal. The
second is to decide whether there exists a rendezvous algorithm in variant WO with the polynomial (in N) complexity,
or the exponential approach provided in [10] cannot be improved.

References
[1] P. Borowiecki, S. Das, D. Dereniowski, L. Kuszner. Distributed Evacuation in Graphs with Multiple Exits. In Proc.

23rd Int.’l Colloquium on Structural Information and Communication Complexity (SIROCCO), volume 9988 of
LNCS, pages 228–241. Springer, 2016.

[2] J. Chalopin, Y. Dieudonné, A. Labourel, and A. Pelc. Fault-tolerant rendezvous in networks. In Proc. 41st
Int.’l Colloquium on Automata, Languages, and Programming (ICALP), volume 8573 of LNCS, pages 411–422.
Springer, 2014.

10

[3] J. Chalopin, Y. Dieudonné, A. Labourel, and A. Pelc. Rendezvous in networks in spite of delay faults. Distributed
Computing, 29(3):187–205, 2016.

[4] J. Czyzowicz, A. Kosowski, and A. Pelc. How to meet when you forget: log-space rendezvous in arbitrary graphs.
Distributed Computing, 25(2):165–178, 2012.

[5] J. Czyzowicz, A. Kosowski, and A. Pelc. Time versus space trade-offs for rendezvous in trees. Distributed
Computing, 27(2):95–109, 2014.

[6] J. Czyzowicz, A. Labourel, and A. Pelc. How to meet asynchronously (almost) everywhere. ACM Trans.
Algorithms, 8(4):37:1–37:14, 2012.

[7] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U. Vaccaro. Asynchronous deterministic
rendezvous in graphs. Theor. Comput. Sci., 355(3):315–326, 2006.

[8] A. Dessmark, P. Fraigniaud, and A. Pelc. Deterministic rendezvous in graphs. In Proc. 11th Annual European
Symp. on Algorithms (ESA), volume 2832 of LNCS, pages 184–195. Springer, 2003.

[9] Y. DieudonnÃ c©, A. Pelc, and V. Villain:. How to Meet Asynchronously at Polynomial Cost. SIAM J. Comput.
44(3):844–867, 2015.

[10] A. Farrugia, L. Gasieniec, L. Kuszner, and E. Pacheco. Deterministic rendezvous in restricted graphs. In Proc.
41st Int.’l Conf. on Current Trends in Theory and Practice of Computer Science (SOFSEM), volume 8939 of LNCS,
pages 189–200. Springer, 2015.

[11] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory. Theor. Comput. Sci.,
621:57–72, 2016.

[12] Z. Gu, Y. Wang, Q.S. Hua, and F.C.M Lau, Blind Rendezvous Problem, Rendezvous in Distributed Systems.
Springer, Singapore, 2017.

[13] A. Pelc. Deterministic rendezvous in networks: A comprehensive survey. Networks, 59(3):331–347, 2012.

[14] G. Viglietta. Rendezvous of two robots with visible bits. In Proc. 9th Int.’l Symp. on Algorithms and Experiments
for Sensor Systems, Wireless Networks and Distributed Robotics, (Algosensors), volume 8243 of LNCS, pages
291–306. Springer, 2013.

11

Appendix: Figures

21

3

4 2 3 41

W2

W1

W ′
1

W ′
2

Figure 4: Examples of sub-walk: W1 = ((1, 2), (2, 4)) is a sub-walk of W2 = ((1, 2), (2, 3), (3, 2), (2, 4)). Contrary,
W ′1 = ((1, 2), (2, 4)) is not a sub-walk of W ′2 = ((1, 2), (2, 3), (3, 4)).

1 = sA

5

3

7

2 1

6

5 = sB

4
3

7

Figure 5: Examples of walks obtained by executing Procedure MAKEWALK:
WA = ((1, 3),(3, 1),(1, 5),(5, 1),(1, 7),(7, 1)) and WB = ((5, 6),(6, 5),(5, 1),(1, 7),(7, 1),(1, 3),(3, 1),(1, 5),(5, 2),(2, 5),(5, 4),(4, 5)).
Notice that
2 ·WB = ((5, 6),(6, 5),(5, 1),(1, 7),(7, 1),(1,3),(3,1),(1,5),(5, 2),(2, 5),(5, 4),(4, 5), (5, 6),(6, 5),(5,1),(1,7),(7,1),(1, 3),
(3, 1),(1, 5),(5, 2),(2, 5),(5, 4),(4, 5)), and the sequence of edges forming WA is highlighted in boldface inside 2 ·WB .

12

T4T4

T3

T2

T1

Figure 6: Visualisation of arguments used in Theorem 3. We assume that w1 < w2 < w3 < w4 are four possible edge
weights, and in the picture Ti, 1 ≤ i ≤ 4, represents a tree containing edges with weights wi, wi+1, . . . , w4 only. Hence,
T4 ⊂ T3 ⊂ T2 ⊂ T1.

13

