7,689 research outputs found

    On the supply of heavy planetary material to the magnetotail of Mercury

    Get PDF
    We examine the transport of low-energy heavy ions of planetary origin (O<sup>+</sup>, Na<sup>+</sup>, Ca<sup>+</sup>) in the magnetosphere of Mercury. We show that, in contrast to Earth, these ions are abruptly energized after ejection into the magnetosphere due to enhanced curvature-related parallel acceleration. Regardless of their mass-to-charge ratio, the parallel speed of these ions is rapidly raised up to ~ 2 <i>V</i><sub><i>E</i> &times; <i>B</i></sub> (denoting by <i>V</i><sub><i>E</i> &times; <i>B</i></sub> the magnitude of the local <b><i>E</b></i> &times; <b><i>B</b></i> drift speed), in a like manner to Fermi-type acceleration by a moving magnetic mirror. This parallel energization is such that ions with very low initial energies (a few tenths of eVs) can overcome gravity and, regardless of species or convection rate, are transported over comparable distances into the nightside magnetosphere. The region of space where these ions reach the magnetotail is found to extend over altitudes similar to those where enhanced densities are noticeable in the MESSENGER data, viz., from ~ 1000 km up to ~ 6000 km in the pre-midnight sector. The observed density enhancements may thus follow from <b><i>E</b></i> &times; <b><i>B</b></i> related focusing of planetary material of dayside origin into the magnetotail. Due to the planetary magnetic field offset, an asymmetry is found between drift paths anchored in the Northern and Southern hemispheres, which puts forward a predominant role of heavy material originating in the Northern Hemisphere in populating the innermost region of Mercury's magnetotail

    Sequence sensitivity of breathing dynamics in heteropolymer DNA

    Full text link
    We study the fluctuation dynamics of localized denaturation bubbles in heteropolymer DNA with a master equation and complementary stochastic simulation based on novel DNA stability data. A significant dependence of opening probability and waiting time between bubble events on the local DNA sequence is revealed and quantified for a biological sequence of the T7 bacteriophage. Quantitative agreement with data from fluorescence correlation spectroscopy (FCS) is demonstrated.Comment: 4 pages, 5 figures, to appear in Physical Review Letter

    Dispersion-theoretical analysis of the nucleon electromagnetic form factors: Inclusion of time-like data

    Full text link
    We update a recent dispersion--theoretical fit to the nucleon electromagnetic form factors by including the existing data in the time--like region. We show that while the time--like data for the proton can be described consistently with the existing world space--like data, this is not the case for the neutron. Another measurement of the process e+enˉne^+ e^- \to \bar n n is called for. We furthermore sharpen the previous estimate of the separation between the perturbative and the non--perturbative regime, which is characterized by a scale parameter Λ210\Lambda^2 \simeq 10\,GeV2^2.Comment: 7 pp, LaTeX, uses epsf, 2 figures in separate file, four data points changed, slight changes in the fits, conclusions unchange

    Bubbles, clusters and denaturation in genomic DNA: modeling, parametrization, efficient computation

    Full text link
    The paper uses mesoscopic, non-linear lattice dynamics based (Peyrard-Bishop-Dauxois, PBD) modeling to describe thermal properties of DNA below and near the denaturation temperature. Computationally efficient notation is introduced for the relevant statistical mechanics. Computed melting profiles of long and short heterogeneous sequences are presented, using a recently introduced reparametrization of the PBD model, and critically discussed. The statistics of extended open bubbles and bound clusters is formulated and results are presented for selected examples.Comment: to appear in a special issue of the Journal of Nonlinear Mathematical Physics (ed. G. Gaeta

    Reversal of age-related learning deficiency by the vertebrate PACAP and IGF-1 in a novel invertebrate model of aging: the pond snail (Lymnaea Stagnalis)

    Get PDF
    With the increase of life span, nonpathological age-related memory decline is affecting an increasing number of people. However, there is evidence that age-associated memory impairment only suspends, rather than irreversibly extinguishes, the intrinsic capacity of the aging nervous system for plasticity (1). Here, using a molluscan model system, we show that the age-related decline in memory performance can be reversed by administration of the pituitary adenylate cyclase activating polypeptide (PACAP). Our earlier findings showed that a homolog of the vertebrate PACAP38 and its receptors exist in the pond snail (Lymnaea stagnalis) brain (2), and it is both necessary and instructive for memory formation after reward conditioning in young animals (3). Here we show that exogenous PACAP38 boosts memory formation in aged Lymnaea, where endogenous PACAP38 levels are low in the brain. Treatment with insulin-like growth factor-1, which in vertebrates was shown to transactivate PACAP type I (PAC1) receptors (4) also boosts memory formation in aged pond snails. Due to the evolutionarily conserved nature of these polypeptides and their established role in memory and synaptic plasticity, there is a very high probability that they could also act as “memory rejuvenating” agents in humans

    Acceleration and transport of ions in turbulent current sheets: formation of non-maxwelian energy distribution

    Get PDF
    The paper is devoted to particle acceleration in turbulent current sheet (CS). Our results show that the mechanism of CS particle interaction with electromagnetic turbulence can explain the formation of power law energy distributions. We study the ratio between adiabatic acceleration of particles in electric field in the presence of stationary turbulence and acceleration due to electric field in the case of dynamic turbulence. The correlation between average energy gained by particles and average particle residence time in the vicinity of the neutral sheet is discussed. It is also demonstrated that particle velocity distributions formed by particle-turbulence interaction are similar in essence to the ones observed near the far reconnection region in the Earth's magnetotail

    Denaturation transition of stretched DNA

    Get PDF
    We generalize the Poland-Scheraga model to consider DNA denaturation in the presence of an external stretching force. We demonstrate the existence of a force-induced DNA denaturation transition and obtain the temperature-force phase diagram. The transition is determined by the loop exponent cc for which we find the new value c=4ν1/2c=4\nu-1/2 such that the transition is second order with c=1.85<2c=1.85<2 in d=3d=3. We show that a finite stretching force FF destabilizes DNA, corresponding to a lower melting temperature T(F)T(F), in agreement with single-molecule DNA stretching experiments.Comment: 5 pages, 3 figure

    Global Response to Local Ionospheric Mass Ejection

    Get PDF
    We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description

    New Constraints on Dispersive Form Factor Parameterizations from the Timelike Region

    Get PDF
    We generalize a recent model-independent form factor parameterization derived from rigorous dispersion relations to include constraints from data in the timelike region. These constraints dictate the convergence properties of the parameterization and appear as sum rules on the parameters. We further develop a new parameterization that takes into account finiteness and asymptotic conditions on the form factor, and use it to fit to the elastic \pi electromagnetic form factor. We find that the existing world sample of timelike data gives only loose bounds on the form factor in the spacelike region, but explain how the acquisition of additional timelike data or fits to other form factors are expected to give much better results. The same parameterization is seen to fit spacelike data extremely well.Comment: 24 pages, latex (revtex), 3 eps figure
    corecore