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Denaturation Transition of Stretched DNA

Andreas Hanke,1 Martha G. Ochoa,1 and Ralf Metzler2

1Department of Physics and Astronomy, University of Texas at Brownsville, 80 Fort Brown, Brownsville, USA
2Physics Department, Technical University of Munich, D-85747 Garching, Germany

(Received 19 September 2007; published 9 January 2008)

We generalize the Poland-Scheraga model to consider DNA denaturation in the presence of an external
stretching force. We demonstrate the existence of a force-induced DNA denaturation transition and obtain
the temperature-force phase diagram. The transition is determined by the loop exponent c, for which we
find the new value c � 4�� 1=2 such that the transition is second order with c � 1:85< 2 in d � 3. We
show that a finite stretching force F destabilizes DNA, corresponding to a lower melting temperature
T�F�, in agreement with single-molecule DNA stretching experiments.

DOI: 10.1103/PhysRevLett.100.018106 PACS numbers: 87.14.G�, 05.70.Fh, 64.10.+h, 82.37.Rs

Under physiological conditions the thermodynamically
stable configuration of DNA is the Watson-Crick double
helix. The constituent monomers of each helix, the nucleo-
tides A, T, G, and C, pair with those of the complementary
helix according to the key-lock principle, such that only the
base pairs (bps) AT and GC can form [1]. Upon heating or
titration with acid or alkali of double-stranded DNA, re-
gions of unbound bps proliferate along the DNA until full
separation of the two DNA strands at the melting tempera-
ture Tm; depending on the relative content of AT bps, Tm
ranges between some 60 �C to 110 �C [2]. The classical
Poland-Scheraga (PS) model views DNA as an alternating
sequence of intact double-helical and denatured, single-
stranded domains (bubbles or loops). Double-helical re-
gions are dominated by the hydrogen bonding of bps as
well as base stacking, bubbles by the entropy gain on
disruption of bps [3]. The PS model is fundamental in
biological physics and has been progressively refined to
obtain a quantitative understanding of the DNA melting
process [4,5]. DNA denaturation can also be induced me-
chanically, by longitudinal stretching of single DNA mole-
cules by optical or magnetic tweezers or atomic force
microscopes [6–9]. At the transition, the plot of stretching
force F versus mean DNA extension L exhibits a plateau at
60–90 pN [10,11]. Force-induced destabilization of DNA
has become a valuable tool, e.g., to probe the interaction of
proteins that specifically bind to single-stranded DNA, at
physiological melting temperatures Tm�F� well below
Tm�0� of free DNA [12].

In this Letter we consider the force-assisted denatura-
tion transition of double-stranded DNA in the framework
of the PS model (Fig. 1). The thermodynamic state of the
DNA molecule now depends on both temperature T and
stretching force F. We find a bounded region of bound
states in the (T, F) plane (Fig. 2). The shape of the
transition line implies that finite stretching forces F indeed
lower the melting temperature Tm�F�, and the calculated
force-extension relations F�L� exhibit a plateau over a
certain range of DNA extension L (Fig. 3). Both observa-

tions are in agreement with force-induced DNA melting
experiments.

We treat the chain in the grand canonical ensemble in
which the total number N of bps and the end-to-end vector
L fluctuate. The partition function in d � 3 becomes

 Z �z; F� �
X1
N�1

Z
d3LZcan�N;L�zN exp��FLx� (1)

with � � 1=�kBT�. Zcan�N;L� is the canonical partition
function of a chain of N bps with fixed end-to-end vector
L, and z is the fugacity. We assume that the force F acts in
the positive x direction, and Lx is the x component of L
(Fig. 1). If bound segments and bubbles are independent, Z
factorizes:

 Z �z; F� � �e ��e

�X1
n�0

�B��n
�
B�e; (2)

FIG. 1. Stretched DNA in the PS model with bound segments
B and denatured loops �. The DNA is attached between O and
L and subject to the stretching force F in the x direction. Perfect
matching in heterogeneous DNA requires both arches of a loop
to have equal length ‘.
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the last term equaling �2
eB=�1� B��. The alternating

sequence of bound segments and bubbles with weights B
and � in Eq. (2) is complemented by the weight �e of an
open end unit at both ends of the chain. Note that only one
strand of the end unit is bound to the, say, magnetic bead,
while the other strand is moving freely.

We model a bound segment with k � 1; 2; . . . bps as a
rigid rod of length akwhere a � 0:34 nm is the length of a
bound bp in B-DNA [10]. For simplicity we assume that
the binding energy E0 < 0 per bp is the same for all bps.
The statistical weight of a segment with fixed number k and
fixed orientation is then !k with ! � exp��"� and " �
�E0 > 0. Assuming that k fluctuates with fixed fugacity z,
and rotates around one end while subject to the force F
(Fig. 1), the statistical weight of the segment for fixed z and
F becomes
 

B�z;!; F� �
X1
k�1

�!z�k

4�

Z
�
d� exp��Fx� (3a)

�
1

2y
ln
�

1�!ze�y

1�!zey

�
; y 	 �Fa: (3b)

Integration in Eq. (3a) is over the unit sphere with area 4�,
and x � ak cos� where � is the polar angle between seg-
ment and x axis. At F � 0, B�z;!; 0� � !z=�1�!z� as
found previously for the denaturation transition of free
DNA [13]. Note that B is only well-defined for !zey <
1; in what follows we assume z < e�y=!.

Denatured loops are considered as closed random walks
with 2‘ monomers, corresponding to ‘ broken bps. This
loop starts at O and visits the point r after ‘ monomers
(Fig. 1). The number of configurations of a loop is

 ��‘; r� � C0�2‘�p‘�r� (4)

under this constraint, where C0�2‘� counts the configura-
tions of a loop of length 2‘ starting at O and p‘�r� is the
probability that the loop visits r after ‘ monomers. For an
ideal random walk in d � 3, C0�2‘� 
�2‘‘�3=2 (� is the
connectivity constant) and p‘�r� 
R�3 exp����r=R�2�
where � > 0, r � jrj, and R � b‘1=2 is the scaling
length of the walk. The amplitude b is proportional to
the persistence length of the walk. Thus, ��‘; r� 

s‘‘�3 exp����r=R�2� where s � �2. We assume that r
moves freely and is subject to the force F in the positive x
direction. The weight of an ideal random loop for fixed ‘
and F is given by the Gaussian integral

 ��‘; F� �
Z
d3r��‘; r�e�Fx � As‘‘�c exp��y2‘� (5)

where A is an amplitude, c � 3=2, and � � b2=�4�a2�.
Finally, we sum ��‘; F� over ‘with weight z‘ to obtain the
statistical weight for an ideal random loop

 ��z; F� � A
X1
‘�1

u‘‘�c � ALic�u�; u � sz exp��y2�:

(6)

Lic�u� �
P
1
‘�1 u

‘‘�c is the polylog function [14], con-
verging for juj< 1 for any c. For u � 1 three cases exist:
(i) c � 1: Lic�1� diverges; (ii) 1< c � 2: Lic�1� converges
but Li0c�u�ju�1 diverges; (iii) c > 2: Both Lic�1� and
Li0c�u�ju�1 converge. The limit u � 1 corresponds to the
value zm�F� � exp���y2�=s of the fugacity; thus, ��z; F�
is only well-defined for z � zm�F� and diverges for z >
zm�F�. The statistical weight �e of an end unit modeled as
ideal random walk may be derived in a similar way and one
obtains �e�z; F� � AeLi0�u�.

For free DNA it was found that the nature of the denatu-
ration transition is determined by the analytic behavior of
Lic�u� at u � 1: for c � 1 there is no phase transition in the
thermodynamic sense; for 1< c � 2 the transition is sec-
ond order, and for c > 2 it is first order [3,13]. One finds
c � 3=2< 2 if the loops are ideal random walks. Self-
avoiding interactions within a loop modify this value to
c � 3� � 1:76 with � � 0:588 in d � 3 [15]. In both
cases the transition is second order. Self-avoiding interac-
tions between denatured loops and the rest of the chain
were found to produce c � 2:12> 2, driving the transition
to first order [13,16]. These results suggest that the inclu-
sion of self-avoiding interactions generally shifts the loop
exponent c to larger values, possibly effecting a change of
the transition from second to first order.

To see how c changes when self-avoiding interactions
within a loop are included for the case F > 0, we obtain the
weights � and �e for a self-avoiding walk for ‘! 1.
Then, Eq. (4) holds with C0�2‘� 
�2‘‘�d� being the
number of self-avoiding loops with 2‘ monomers. The
probability density p‘�r� scales as p‘�r� �R�dg�r=R�
where R � b‘� is the scaling length of a self-avoiding
walk and g�x� is a scaling function. The function g�x� is not
known for a self-avoiding loop. In what follows we assume
g�x� 
 x� exp���x	� for x! 1 where � > 0, � is an
exponent, and 	 � 1=�1� �� is determined by an argu-
ment by Fisher [15]. This form of g�x� is consistent with
p‘�r� for a Gaussian loop (� � 1=2, � � 0) obtained
above. For the related linear self-avoiding walk starting
at O and ending at r after ‘ monomers, the above form of
g�x� also holds and � can be expressed in terms of known
exponents [15,17]. For the present case of a self-avoiding
loop 	 � 1=�1� �� still holds but � is unknown.
However, we will see that � drops out from the result for
��z; F� in the limit ‘! 1 at F > 0. The integral in Eq. (5)
is no longer Gaussian, but can be evaluated using the
steepest descent method at 
 � �Fb‘� ! 1. It turns out
that in this limit the integral is dominated by values r=‘� !
1. With the above behavior of g�x� at x! 1 we find for a
self-avoiding loop [cf. Eq. (5)]

 ��‘; F� � As‘‘�cy1=�2���1 exp��y1=�‘� (7)

for 
! 1 with the new loop exponent in d � 3,

 c � 4�� 1=2 � 1:85: (8)

Thus, in the presence of self-avoiding interactions within a
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denatured loop and F > 0 the transition remains second
order but moves closer to first order compared to free DNA
(with c � 3� � 1:76 obtained within the same approach).
The amplitude A in Eq. (7) is proportional to the cooper-
ativity parameter �0 � 1 quantifying the initiation of a
loop in a previously intact double strand in the PS model
[4,5], such that also A� 1. Moreover, � � 0:6 . . . 1:7  1
using � � b2=�4�a2� obtained for an ideal random walk
where b2=� � 2Lpxss=3; here, xss � 0:6 nm is the length
of a base in single-stranded DNA [10] and values for the
persistence length Lp for single-stranded DNA were found
to range between 0.7 nm [6] and 2 nm [18].

Finally, we sum ��‘; F� over ‘ with weight z‘ to obtain
the statistical weight for a self-avoiding loop [cf. Eq. (6)],

 ��z; F� � Ay��Lic�sz exp��y1=���; (9)

where � � 1� 1=�2�� � 0:15 in d � 3. The critical fu-
gacity is now given by zm�F� � exp���y1=��=s. The
weight �e�z; F� for an end unit obtains similarly, the result
being Eq. (9) with c replaced by � � 3=2� �� 2 �
�0:232, using  � 1:16.

Phase diagram.—We now obtain the transition line
between bound and denatured states in the �T; F� plane
in the thermodynamic limit N ! 1. For given fugacity z
the average number of bps (open and closed) becomes

 hNi � @ lnZ�z; !; F�=@ lnz; (10)

where we explicitly include the argument! from Eq. (3) in
the partition function (2). If N is set one has to choose a
fugacity z such that N � hNi; in this case z becomes a
function of !, F, and N. We denote the value of z in the
limit N ! 1 by z��!;F� 	 limN!1z�!;F;N�. Similar to
the case F � 0 [13], z��!;F� is the lowest value of z for
which expression (10) diverges. In the bound state the
divergence turns out to occur when the denominator in
�2
eB=�1� B�� vanishes [see text below Eq. (2)], implying

z��!;F� to satisfy

 B�z�; !; F���z�; F� � 1; bound state: (11)

Conversely, in the denatured state the divergence occurs
because @z�e�z; F� diverges, which implies

 z��!;F� � zm�F�; denatured state; (12)

where zm�F� is the critical fugacity obtained above (which
is independent of !). Thus, starting in a bound state in the
�T; F� plane and approaching the transition line by varying
T and F, the value z��!;F� is determined by Eq. (11) and
increases until it reaches the value zm�F� from Eq. (12). At
this point the denaturation transition occurs. In the dena-
tured state z��!;F� is given by Eq. (12). Right at the
transition both Eqs. (11) and (12) hold simultaneously.
Using ��zm�F�; F� � Ay��Lic�1� by definition of zm�F�
this implies A��Fa���Lic�1� � 1=B�zm�F�; !; F�, relating
F and!, or, equivalently, the reduced force f � Fa=" and
temperature t � kBT=", for the transition line in the �t; f�
plane.

The shape of the transition line fm�t� depends on A, �,
and s. Figure 2(a) shows fm�t� for A � 1,� � 1, and s � 5
for the case that denatured loops are ideal random walks
(� � 0, � � 1=2). The transition line for the more realistic
value A� 1 is also shown (here A � 0:01). The line fm�t�
separates a finite region of bound states from an infinite
region of denatured states. The point (t0, f � 0) with t0 �
tm�f � 0� corresponds to the traditional melting transition
for free DNA (F � 0). The line fm�t� for A � 1 contains a
region in which fm�t� decreases with t, such that increased
stretching forces f lower the melting temperature tm�f�,
corresponding to force-induced destabilization of DNA
[10]. Interestingly, for A � 0:01, application of a small
stretching force f first increases tm [19,20]. Moreover,
fm�t� vanishes for both t! t0 (as jt� t0j1=2) and t! 0
(as ��1=2t1=2). This means that for given 0< f0 < fmax,
where fmax is the maximum of fm�t�, the chain does not
only denature at a large t�m�f0� but also at a small t�m�f0�, as
indicated in Ref. [21]. This behavior can be traced back to a
balance of the terms ��Fa�2 and �Fa in zm�F� �
exp���y2�=s and Eq. (3b), respectively [22]. For
��Fa�2 � �Fa, i.e., kBT � Fa, the melting transition
at t�m�f0� is mainly driven by the entropy gain on creation
of fluctuating loops, similar as for free DNA. For kBT �
Fa the transition at t�m�f0� is due to the fact that
B�zm�F�; !; F� decreases with y � �Fa � f=t in the de-
natured state, due to the rapid decay of zm�F� [cf. Eq. (3b)]
[23]. Figure 2(b) shows the line fm�t� for self-avoiding
loops with A � 1 and c � 1:85. Note that Eq. (9) reduces
to the known result for a free self-avoiding loop (y � 0)
only if � � 0:15 is replaced by � � 0; this is not a contra-
diction since Eq. (9) is based on the assumption that 
 �
�bF‘� is large. To include in Fig. 2(b) the behavior of
fm�t� for f � Fa="! 0 we use Eq. (9) with � � 0:15 for
y > 1 and � � 0 for y � 1.

Force-extension relations.—In thermal denaturation of
DNA one measures the fraction � of bound bps as function
of T. From the partition function (1) the average number
hMi of bound bps is hMi � @ lnZ=@ ln! and � �
hMi=hNi with hNi from Eq. (10). Conversely, stretching
experiments on DNA reveal its response to an applied
mechanical stress. The mean of the component of the
DNA extension along F is hLxi � ��1@ lnZ=@F. The

FIG. 2 (color online). Transition lines fm � Fma=" as func-
tion of t � kBT=" for � � 1, s � 5 for denatured loops modeled
as (a) ideal random walks and (b) self-avoiding walks
(cf. Fig. 3).
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average extension per bp in units of the bp-bp distance a is
l � hLxi=�ahNi�. For comparison with experiments and
simulations we calculate l in the thermodynamic limit
hNi ! 1. Consider the Gibbs-Duhem relation for the
thermodynamic potential lnZ�z; !; F� [24]: Nd lnz�
Md ln!� �LxdF � 0. If N is fixed one obtains d lnz�
�d ln!� ldy � 0 where z is a function of !, F, and N.
For N ! 1, d lnz� ��d ln!� ldy � 0, z��!;F� being
the fugacity for hNi ! 1 as discussed above; ��!;F� and
l�!;F� are the bound bp fraction and reduced DNA ex-
tension in the same limit. For constant y � �Fa (or y � 0)
one finds � � �@ lnz��!;F�=@ ln! [so that � � 0 in the
denatured state due to Eq. (12) as expected]. For constant
!, corresponding to constant t � kBT=", we find
l�!;F� � ��a���1@ lnz��!;F�=@F. Based on this result
Fig. 3 shows force-extension relations f�l� at fixed t1 <
t2 < t3 < t4 for the case that denatured loops are self-
avoiding random walks [cf. Fig. 2(b)]. The two sets of
curves correspond to expansions of f�l� for small f and
close to the transition, respectively. The curves f�l� display
flattened regions close to the transition, in qualitative
agreement with experimental force-extension relations
for DNA. These regions become less pronounced as t
increases and vanish for t! t0 � tm�F � 0�. A force-
extension relation for the case c > 2, for which the tran-
sition is first order, is also shown (here c � 2:5). In this
case l�f� jumps discontinuously from a value l� to a larger
value l� at the transition.

We have shown that a longitudinal stretching force F
results in a reduced denaturation temperature Tm�F�, cor-
responding to force-induced destabilization of DNA. For
the loop exponent in the presence of a finite F > 0 we
found c � 4�� 1=2 � 1:85, so that the denaturation tran-
sition remains second order, but with an increased expo-
nent. It would be interesting to study how the value of c is

modified when self-avoiding interactions between a loop
and the rest of the chain are included [13,16].

This work was supported by the NIH through SCORE
Grant No. GM068855-03S1 and by the AFOSR through
Grant No. FA9550-05-1-0472 (A. H. and M. G. O.).
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