2,937 research outputs found

    Effects of four Fusarium toxins (fumonisin B(1), alpha-zearalenol, nivalenol and deoxynivalenol) on porcine whole-blood cellular proliferation.

    Get PDF
    The in vitro effects of four Fusarium toxins, fumonisin B1 (FB1), a-zearalenol (a-ZEA), nivalenol (NIV) and deoxynivalenol (DON), on mitogen-induced cell proliferation were determined in swine whole-blood cultures. Considering the lack of sufficient toxicological data both on single and in combination effects, in vitro studies may contribute to risk assessment of these toxins. Incubation with increasing concentrations of FB1 did not produce any consequence on proliferation; in contrast a-ZEA, NIV and DON showed an inhibitory effect. Dose–response curves for each mycotoxin were generated. NIV was found to be the most potent toxin followed by DON and a-ZEA. The effects of both FB1 þ a-ZEA and NIVþ DON mixtures were also analysed to investigate possible interactions. The results indicated that combination of FB1þ a-ZEA produces a synergistic inhibition of porcine cell proliferation; whereas there is no interaction between DON and NIV on porcine wholeblood proliferation, at tested concentrations

    Polarization Independent Unidirectional Scattering with Turnstile Nanoantennas

    Get PDF
    We study the scattering behavior of a dielectric cross-dipole nanoantenna in the near-infrared spectral range when it is excited by a circular polarized plane wave. We theoretically demonstrate, for optimized geometrical parameters of the proposed turnstile structure, the possibility to simultaneously obtain a unidirectional scattering and a specific circular polarization of the scattered field. Our results open new functionalities for metamaterials and optical nanoantennas

    Novel laser-based techniques for monitoring of volcanoes

    Get PDF
    An overview of novel laser techniques suitable for volcanic monitoring, based on different kinds of infrared laser sources, is presented. Their main advantages and drawbacks are discussed focusing on the achievable sensitivity and precision levels in analysis of gaseous species. Some of the most recent experimental results obtained in laboratory development as well as in field tests of home-built laser spectrometers are reported. New perspectives in optical devices aimed at geochemical and geophysical applications are also considered

    THz Generation via Optical Rectification in Nanomaterials: Universal Modeling Approach and Effective chi(2)chi^{(2)} Description

    Get PDF
    Optical rectification (OR) at the nanoscale has attracted an increasing interest in the prospect of providing efficient ultracompact terahertz (THz) sources. Here, a universal modeling approach capable of addressing both isotropic and anisotropic all-dielectric nonlinear nanomaterials on an ultra-broad spectral range, covering the highly dispersive phonon-polariton window, and different orientations of the crystallographic axes with respect to the geometry of the structure is reported. This analysis is exemplified by considering two study cases, that is, nanopillars of AlGaAs and of LiNbO3. A close comparison between the two cases is established in terms of THz generation efficiency from 4 to 14 THz. Phonon-polariton contributions to the OR process are disentangled from the electronic one, and a model order reduction based on the reciprocity theorem is applied and validated on both the considered configurations. These results, combined with the inspection of the THz near-field features, pave the way to the design and optimization of nonlinear metasurfaces for THz generation and detection at the nanoscale

    Prognostic factors and biomarkers of responses to immune checkpoint inhibitors in lung cancer

    Get PDF
    Manipulation of the immune response is a game changer in lung cancer treatment, revolutionizing management. PD1 and CTLA4 are dynamically expressed on different T cell subsets that can either disrupt or sustain tumor growth. Monoclonal antibodies (MoAbs) against PD1/PDL1 and CTLA4 have shown that inhibitory signals can be impaired, blocking T cell activation and function. MoAbs, used as both single-agents or in combination with standard therapy for the treatment of advanced non-small cell lung cancer (NSCLC), have exhibited advantages in terms of overall survival and response rate; nivolumab, pembrolizumab, atezolizumab and more recently, durvalumab, have already been approved for lung cancer treatment and more compounds are in the pipeline. A better understanding of signaling elicited by these antibodies on T cell subsets, as well as identification of biological determinants of sensitivity, resistance and correlates of efficacy, will help to define the mechanisms of antitumor responses. In addition, the relevance of T regulatory cells (Treg) involved in immune responses in cancer is attracting increasing interest. A major challenge for future research is to understand why a durable response to immune checkpoint inhibitors (ICIs) occurs only in subsets of patients and the mechanisms of resistance after an initial response. This review will explore current understanding and future direction of research on ICI treatment in lung cancer and the impact of tumor immune microenvironment n influencing clinical responses

    Nearly optimal solutions for the Chow Parameters Problem and low-weight approximation of halfspaces

    Get PDF
    The \emph{Chow parameters} of a Boolean function f:{1,1}n{1,1}f: \{-1,1\}^n \to \{-1,1\} are its n+1n+1 degree-0 and degree-1 Fourier coefficients. It has been known since 1961 (Chow, Tannenbaum) that the (exact values of the) Chow parameters of any linear threshold function ff uniquely specify ff within the space of all Boolean functions, but until recently (O'Donnell and Servedio) nothing was known about efficient algorithms for \emph{reconstructing} ff (exactly or approximately) from exact or approximate values of its Chow parameters. We refer to this reconstruction problem as the \emph{Chow Parameters Problem.} Our main result is a new algorithm for the Chow Parameters Problem which, given (sufficiently accurate approximations to) the Chow parameters of any linear threshold function ff, runs in time \tilde{O}(n^2)\cdot (1/\eps)^{O(\log^2(1/\eps))} and with high probability outputs a representation of an LTF ff' that is \eps-close to ff. The only previous algorithm (O'Donnell and Servedio) had running time \poly(n) \cdot 2^{2^{\tilde{O}(1/\eps^2)}}. As a byproduct of our approach, we show that for any linear threshold function ff over {1,1}n\{-1,1\}^n, there is a linear threshold function ff' which is \eps-close to ff and has all weights that are integers at most \sqrt{n} \cdot (1/\eps)^{O(\log^2(1/\eps))}. This significantly improves the best previous result of Diakonikolas and Servedio which gave a \poly(n) \cdot 2^{\tilde{O}(1/\eps^{2/3})} weight bound, and is close to the known lower bound of max{n,\max\{\sqrt{n}, (1/\eps)^{\Omega(\log \log (1/\eps))}\} (Goldberg, Servedio). Our techniques also yield improved algorithms for related problems in learning theory

    Asymptotic Scaling of the Diffusion Coefficient of Fluctuating "Pulled" Fronts

    Full text link
    We present a (heuristic) theoretical derivation for the scaling of the diffusion coefficient DfD_f for fluctuating ``pulled'' fronts. In agreement with earlier numerical simulations, we find that as NN\to\infty, DfD_f approaches zero as 1/ln3N1/\ln^3N, where NN is the average number of particles per correlation volume in the stable phase of the front. This behaviour of DfD_f stems from the shape fluctuations at the very tip of the front, and is independent of the microscopic model.Comment: Some minor algebra corrected, to appear in Rapid Comm., Phys. Rev.

    R705H mutation of MYH9 is associated with MYH9-related disease and not only with non-syndromic deafness DFNA17

    Get PDF
    MYH9-related disease (MYH9-RD) is a rare autosomal dominant disease caused by mutation of MYH9, the gene encoding for the heavy chain of non-muscle myosin IIA (NMMHC-IIA). MYH9-RD patients have macrothrombocytopenia and granulocyte inclusions (pathognomonic sign of the disease) containing wild-type and mutant NMMHC-IIA. During life they might develop sensorineural hearing loss, cataract, glomerulonephritis, and elevation of liver enzymes. One of the MYH9 mutations, p.R705H, was previously reported to be associated with DFNA17, an autosomal dominant non-syndromic sensorineural hearing loss without any other features associated. We identified the same mutation in two unrelated families, whose four affected individuals had not only hearing impairment but also thrombocytopenia, giant platelets, leukocyte inclusions, as well as mild to moderate elevation of some liver enzymes. Our data suggest that DFNA17 should not be a separate genetic entity but part of the wide phenotypic spectrum of MYH9-RD characterized by congenital hematological manifestations and variable penetrance and expressivity of the extra-hematological features
    corecore