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Abstract

The Chow parameters of a Boolean function f : {−1, 1}n → {−1, 1} are its n + 1 degree-0 and
degree-1 Fourier coefficients. It has been known since 1961 [Cho61, Tan61] that the (exact values of the)
Chow parameters of any linear threshold function f uniquely specify f within the space of all Boolean
functions, but until recently [OS11] nothing was known about efficient algorithms for reconstructing f
(exactly or approximately) from exact or approximate values of its Chow parameters. We refer to this
reconstruction problem as the Chow Parameters Problem.

Our main result is a new algorithm for the Chow Parameters Problem which, given (sufficiently
accurate approximations to) the Chow parameters of any linear threshold function f , runs in time Õ(n2)·
(1/ε)O(log2(1/ε)) and with high probability outputs a representation of an LTF f ′ that is ε-close to f in

Hamming distance. The only previous algorithm [OS11] had running time poly(n) · 22Õ(1/ε2)

.
As a byproduct of our approach, we show that for any linear threshold function f over {−1, 1}n,

there is a linear threshold function f ′ which is ε-close to f and has all weights that are integers of
magnitude at most

√
n · (1/ε)O(log2(1/ε)). This significantly improves the previous best result of [DS09]

which gave a poly(n) · 2Õ(1/ε2/3) weight bound, and is close to the known lower bound of max{
√
n,

(1/ε)Ω(log log(1/ε))} [Gol06, Ser07]. Our techniques also yield improved algorithms for related problems
in learning theory.

In addition to being significantly stronger than previous work, our results are obtained using concep-
tually simpler proofs. The two main ingredients underlying our results are (1) a new structural result
showing that for f any linear threshold function and g any bounded function, if the Chow parameters of
f are close to the Chow parameters of g then f is close to g; (2) a new boosting-like algorithm that given
approximations to the Chow parameters of a linear threshold function outputs a bounded function whose
Chow parameters are close to those of f .
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1 Introduction

1.1 Background and motivation. A linear threshold function, or LTF, over {−1, 1}n is a Boolean func-
tion f : {−1, 1}n → {−1, 1} of the form

f(x) = sign

(
n∑
i=1

wixi − θ
)
,

where w1, . . . , wn, θ ∈ R. The function sign(z) takes value 1 if z ≥ 0 and takes value −1 if z < 0; the
wi’s are the weights of f and θ is the threshold. Linear threshold functions have been intensively studied
for decades in many different fields. They are variously known as “halfspaces” or “linear separators” in
machine learning and computational learning theory, “Boolean threshold functions,” “(weighted) threshold
gates” and “(Boolean) perceptrons (of order 1)” in computational complexity, and as “weighted majority
games” in voting theory and the theory of social choice. Throughout this paper we shall refer to them
simply as LTFs.

The Chow parameters of a function f : {−1, 1}n → R are the n+ 1 values

f̂(0) = E[f(x)], f̂(i) = E[f(x)xi] for i = 1, . . . , n,

i.e., the n+ 1 degree-0 and degree-1 Fourier coefficients of f . (Here and throughout the paper, all probabili-
ties and expectations are with respect to the uniform distribution over {−1, 1}n unless otherwise indicated.)
It is easy to see that in general the Chow parameters of a Boolean function may provide very little informa-
tion about f ; for example, any parity function on at least two variables has all its Chow parameters equal
to 0. However, in a surprising result, C.-K. Chow [Cho61] showed that the Chow parameters of an LTF f
uniquely specify f within the space of all Boolean functions mapping {−1, 1}n → {−1, 1}. Chow’s proof
(given in Section 3.1) is simple and elegant, but is completely non-constructive; it does not give any clues
as to how one might use the Chow parameters to find f (or an LTF that is close to f ). This naturally gives
rise to the following algorithmic question, which is referred to as the “Chow Parameters Problem:”

The Chow Parameters Problem (rough statement): Given (exact or approximate) values for
the Chow parameters of an unknown LTF f , output an (exact or approximate) representation of
f as sign(v1x1 + · · ·+ vnxn − θ′).

Motivation and Prior Work. We briefly survey some previous research on the Chow Parameters problem
(see Section 1.1 of [OS11] for a more detailed and extensive account). Motivated by applications in electrical
engineering, the Chow Parameters Problem was intensively studied in the 1960s and early 1970s [Elg60,
MTK62, Win64, MTB67]; several researchers suggested heuristics of various sorts [Kas63, Win63, KW65,
Der65] which were experimentally analyzed in [Win69]. See [Win71] for a survey covering much of this
early work and [Bau73, Hur73] for some later work from this period.

Researchers in game theory and voting theory rediscovered Chow’s theorem in the 1970s [Lap72], and
the theorem and related results have been the subject of study in those communities down to the present
[Pen46, Ban65, DS79, EL89, TZ92, Fre97, Lee03, Car04, FM04, TT06, APL07]. Since the Fourier coef-
ficient f̂(i) can be viewed as representing the “influence” of the i-th voter under voting scheme f (under
the “Impartial Culture Assumption” in the theory of social choice, corresponding to the uniform distribution
over inputs x ∈ {−1, 1}n), the Chow Parameters Problem corresponds to designing a set of weights for n
voters so that each individual voter has a certain desired level of influence over the final outcome. This nat-
ural motivation has led practitioners to implement and empirically evaluate various heuristics for the Chow
parameters problem, see [LW98, Lee02a, Lee02b, dKKZ10, Kur12, KN12].

In the 1990s and 2000s several researchers in learning theory considered the Chow Parameters Prob-
lem. Birkendorf et al. [BDJ+98] showed that the Chow Parameters Problem is equivalent to the problem of
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efficiently learning LTFs under the uniform distribution in the “1-Restricted Focus of Attention (1-RFA)”
model of Ben-David and Dichterman [BDD98] (we give more details on this learning model in Section 8).
Birkendorf et al. showed that if f is an LTF with integer weights of magnitude at most poly(n), then esti-
mates of the Chow parameters that are accurate to within an additive ±ε/poly(n) information-theoretically
suffice to specify the halfspace f to within ε-accuracy. Other information-theoretic results of this flavor
were given by [Gol06, Ser07]. In complexity theory several generalizations of Chow’s Theorem were given
in [Bru90, RSOK95], and the Chow parameters play an important role in a recent study [CHIS10] of the
approximation-resistance of linear threshold predicates in the area of hardness of approximation.

Despite this considerable interest in the Chow Parameters Problem from a range of different communi-
ties, the first provably effective and efficient algorithm for the Chow Parameters Problem was only obtained

fairly recently. [OS11] gave a poly(n) ·22Õ(1/ε2)
-time algorithm which, given sufficiently accurate estimates

of the Chow parameters of an unknown n-variable LTF f , outputs an LTF f ′ that has Pr[f(x) 6= f ′(x)] ≤ ε.

1.2 Our results. In this paper we give a significantly improved algorithm for the Chow Parameters Prob-
lem, whose running time dependence on ε is almost doubly exponentially better than the [OS11] algorithm.
Our main result is the following:

Theorem 1 (Main, informal statement). There is an Õ(n2) · (1/ε)O(log2(1/ε)) · log(1/δ)-time algorithm A
with the following property: Let f : {−1, 1}n → {−1, 1} be an LTF and let 0 < ε, δ < 1/2. If A is
given as input ε, δ and (sufficiently precise estimates of) the Chow parameters of f , then A outputs integers
v1, . . . , vn, θ such that with probability at least 1− δ, the linear threshold function f∗ = sign(v1x1 + · · ·+
vnxn − θ) satisfies Prx[f(x) 6= f∗(x)] ≤ ε.

Thus we obtain an efficient randomized polynomial approximation scheme with a quasi-polynomial
dependence on 1/ε. We note that for the subclass of LTFs with integer weights of magnitude at most
poly(n), our algorithm runs in poly(n/ε) time, i.e., it is a fully polynomial randomized approximation
scheme (FPRAS) (see Section 7.1 for a formal statement). Even for this restricted subclass of LTFs, the
algorithm of [OS11] runs in time doubly exponential in 1/ε.

Similarly to [OS11], our main result has a range of interesting implications in learning theory. First, it
directly gives an efficient algorithm for learning LTFs in the uniform distribution 1-RFA model. Second, it
yields a very fast agnostic-type algorithm for learning LTFs in the standard uniform distribution PAC model.
Both these algorithms run in time quasi-polynomial in 1/ε. We elaborate on these learning applications in
Section 8.

An interesting feature of our algorithm is that it outputs an LTF with integer weights of magnitude at
most

√
n · (1/ε)O(log2(1/ε)). Hence, as a corollary of our approach, we obtain essentially optimal bounds

on approximating arbitrary LTFs using LTFs with small integer weights. It has been known since the 1960s
that every n-variable LTF f has an exact representation sign(w · x − θ) in which all the weights wi are
integers satisfying |wi| ≤ 2O(n logn), and Håstad [Hås94] has shown that there is an n-variable LTF f for
which any integer-weight representation must have each |wi| ≥ 2Ω(n logn). However, by settling for an
approximate representation (i.e., a representation f ′ = sign(w ·x− θ) such that Prx[f(x) 6= f ′(x)] ≤ ε), it
is possible to get away with much smaller integer weights. Servedio [Ser07] showed that every LTF f can be
ε-approximated using integer weights each at most

√
n ·2Õ(1/ε2), and this bound was subsequently improved

(as a function of ε) to n3/2 · 2Õ(1/ε2/3) in [DS09]. (We note that ideas and tools that were developed in work
on low-weight approximators for LTFs have proved useful in a range of other contexts, including hardness of
approximation [FGRW09], property testing [MORS10], and explicit constructions of pseudorandom objects
[DGJ+10].)

Formally, our approach to proving Theorem 1 yields the following nearly-optimal weight bound on
ε-approximators for LTFs:
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Theorem 2 (Low-weight approximators for LTFs). Let f : {−1, 1}n → {−1, 1} be any LTF. There is an
LTF f∗ = sign(v1x1 + · · · + vnxn − θ) such that Prx[f(x) 6= f∗(x)] ≤ ε and the weights vi are integers
that satisfy

n∑
i=1

v2
i = n · (1/ε)O(log2(1/ε)).

The bound on the magnitude of the weights in the above theorem is optimal as a function of n and nearly
optimal as a function of ε. Indeed, as shown in [Hås94, Gol06], in general any ε-approximating LTF f∗ for
an arbitrary n-variable LTF f may need to have integer weights at least max{Ω(

√
n), (1/ε)Ω(log log(1/ε))}.

Thus, Theorem 2 nearly closes what was previously an almost exponential gap between the known upper
and lower bounds for this problem. Moreover, the proof of Theorem 2 is constructive (as opposed e.g., to
the one in [DS09]), i.e., there is a randomized poly(n) · (1/ε)O(log2(1/ε))-time algorithm that constructs an
ε-approximating LTF.

Techniques. We stress that not only are the quantitative results of Theorems 1 and 2 substantially stronger
than previous work, but the proofs are self-contained and elementary. The [OS11] algorithm relied heavily
on several rather sophisticated results on spectral properties of linear threshold functions; moreover, its proof
of correctness required a careful re-tracing of the (rather involved) analysis of a fairly complex property
testing algorithm for linear threshold functions given in [MORS10]. In contrast, our proof of Theorem 1
entirely bypasses these spectral results and does not rely on [MORS10] in any way. Turning to low-weight
approximators, the improvement from 2Õ(1/ε2) in [Ser07] to 2Õ(1/ε2/3) in [DS09] required a combination
of rather delicate linear programming arguments and powerful results on the anti-concentration of sums
of independent random variables due to Halász [Hal77]. In contrast, our proof of Theorem 2 bypasses
anti-concentration entirely and does not require any sophisticated linear programming arguments.

Two main ingredients underlie the proof of Theorem 1. The first is a new structural result relating
the “Chow distance” and the ordinary (Hamming) distance between two functions f and g, where f is
an LTF and g is an arbitrary bounded function. The second is a new and simple algorithm which, given
(approximations to) the Chow parameters of an arbitrary Boolean function f , efficiently construct a “linear
bounded function” (LBF) g – a certain type of bounded function – whose “Chow distance” from f is small.
We describe each of these contributions in more detail below.

1.3 The main structural result. In this subsection we first give the necessary definitions regarding Chow
parameters and Chow distance, and then state Theorem 7, our main structural result.

1.3.1 Chow parameters and distance measures. We formally define the Chow parameters of a function
on {−1, 1}n:

Definition 3. Given any function f : {−1, 1}n → R, its Chow Parameters are the numbers f̂(0), f̂(1), . . . , f̂(n)
defined by f̂(0) = E[f(x)], f̂(i) = E[f(x)xi] for 1 ≤ i ≤ n. We say that the Chow vector of f is
~χf = (f̂(0), f̂(1), . . . , f̂(n)).

The Chow parameters naturally induce a distance measure between functions f and g:

Definition 4. Let f, g : {−1, 1}n → R. We define the Chow distance between f and g to be dChow(f, g)
def
=

‖~χf − ~χg‖2, i.e., the Euclidean distance between the Chow vectors.

This is in contrast with the familiar L1-distance between functions:

Definition 5. The distance between two functions f, g : {−1, 1}n → R is defined as dist(f, g)
def
= E[|f(x)−

g(x)|]. If dist(f, g) ≤ ε, we say that f and g are ε-close.

We note that if f, g are Boolean functions with range {−1, 1} then dist(f, g) = 2Pr[f(x) 6= g(x)] and
thus dist is equivalent (up to a factor of 2) to the familiar Hamming distance.
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1.3.2 The main structural result: small Chow-distance implies small distance. The following fact can
be proved easily using basic Fourier analysis (see Proposition 1.5 in [OS11]):

Fact 6. Let f, g : {−1, 1}n → [−1, 1]. We have that dChow(f, g) ≤
√

2 · dist(f, g).

Our main structural result, Theorem 7, is essentially a converse which bounds dist(f, g) in terms of
dChow(f, g) when f is an LTF and g is any bounded function:

Theorem 7 (Main Structural Result). Let f : {−1, 1}n → {−1, 1} be an LTF and g : {−1, 1}n → [−1, 1]
be any bounded function. If dChow(f, g) ≤ ε then

dist(f, g) ≤ 2
−Ω

(
3
√

log(1/ε)
)
.

Chow’s theorem says that if f is an LTF and g is any bounded function then dChow(f, g) = 0 implies
that dist(f, g) = 0. In light of this, Theorem 7 may be viewed as a “robust” version of Chow’s Theorem.
Note that the assumption that g is bounded is necessary for the above statement, since the function g(x) =∑n

i=0 f̂(i)xi (where x0 ≡ 1) satisfies dChow(f, g) = 0, but has dist(f, g) = Ω(1). Results of this sort
but with weaker quantitative bounds were given earlier in [BDJ+98, Gol06, Ser07, OS11]; we discuss the
relationship between Theorem 7 and some of this prior work below.

Discussion. Theorem 7 should be contrasted with Theorem 1.6 of [OS11], the main structural result of that
paper. That theorem says that for f : {−1, 1}n → {−1, 1} any LTF and g : {−1, 1}n → [−1, 1] any
bounded function1, if dChow(f, g) ≤ ε then dist(f, g) ≤ Õ(1/

√
log(1/ε)). Our new Theorem 7 provides a

bound on dist(f, g) which is almost exponentially stronger than the [OS11] bound.
Theorem 7 should also be contrasted with Theorem 4 (the main result) of [Gol06], which says that for f

an n-variable LTF and g any Boolean function, if dChow(f, g) ≤ (ε/n)O(log(n/ε) log(1/ε)) then dist(f, g) ≤ ε.
Phrased in this way, Theorem 7 says that for f an LTF and g any bounded function, if dChow(f, g) ≤
εO(log2(1/ε)) then dist(f, g) ≤ ε. So our main structural result may be viewed as an improvement of Gold-
berg’s result that removes its dependence on n. Indeed, this is not a coincidence; Theorem 7 is proved by
carefully extending and strengthening Goldberg’s arguments using the “critical index” machinery developed
in recent studies of structural properties of LTFs [Ser07, MORS10, OS11, DGJ+10].

It is natural to wonder whether the conclusion of Theorem 7 can be strengthened to “dist(f, g) ≤ εc”
where c > 0 is some absolute constant. We show that no such strengthening is possible, and in fact, no con-
clusion of the form “dist(f, g) ≤ 2−γ(1/ε)” is possible for any function γ(1/ε) = ω(log(1/ε)/ log log(1/ε));
we prove this in Section 7.2.

1.4 The algorithmic component. A straightforward inspection of the arguments in [OS11] shows that by
using our new Theorem 7 in place of Theorem 1.6 of that paper throughout, the running time of the [OS11]

algorithm can be improved to poly(n) · 2(1/ε)O(log2(1/ε))
. This is already a significant improvement over the

poly(n) · 22Õ(1/ε2)
running time of [OS11], but is significantly worse than the poly(n) · (1/ε)O(log2(1/ε))

running time which is our ultimate goal.
The second key ingredient of our results is a new algorithm for constructing an LTF from the (approx-

imate) Chow parameters of an LTF f . The previous approach to this problem [OS11] constructed an LTF
with Chow parameters close to ~χf directly and applied the structural result to the constructed LTF. Instead,
our approach is based on the insight that it is substantially easier to find a bounded real-valued function g
that is close to f in Chow distance. The structural result can then be applied to g to conclude that g is close
to f in L1-distance. The problem with this idea is, of course, that we need an LTF that is close to f and

1The theorem statement in [OS11] actually requires that g have range {−1, 1}, but the proof is easily seen to extend to g :
{−1, 1}n → [−1, 1] as well.
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not a general bounded function. However, we show that it is possible to find g which is a “linear bounded
function” (LBF), a type of bounded function closely related to LTFs. An LBF can then be easily converted
to an LTF with only a small increase in distance from f . We now proceed to define the notion of an LBF
and state our main algorithmic result formally. We first need to define the notion of a truncation:

Definition 8. For a real value a, we denote its truncation to [−1, 1] by P1(a). That is, P1(a) = a if |a| ≤ 1
and P1(a) = sign(a), otherwise.

Definition 9. A function g : {−1, 1}n → [−1, 1] is referred to as a linear bounded function (LBF) if there
exists a vector of real values w = (w0, w1, . . . , wn) such that g(x) = P1(w0 +

∑n
i=1wixi). The vector w

is said to represent g.

We are now ready to state our main algorithmic result:

Theorem 10 (Main Algorithmic Result). There exists a randomized algorithm ChowReconstruct that
for every Boolean function f : {−1, 1}n → {−1, 1}, given ε > 0, δ > 0 and a vector ~α = (α0, α1, . . . , αn)
such that ‖~χf − ~α‖ ≤ ε, with probability at least 1 − δ, outputs an LBF g such that ‖~χf − ~χg‖ ≤ 6ε. The
algorithm runs in time Õ(n2ε−4) · log (1/δ). Further, g is represented by a weight vector κv ∈ Rn+1, where
κ ∈ R and v is an integer vector with ‖v‖ = O(

√
n/ε3).

We remark that the condition on the weight vector v given by Theorem 10 is the key for the proof of
Theorem 2.

The way we use ChowReconstruct is to construct an LBF g whose Chow distance from f is small
enough to ensure that dist(f, g) is at most ε. For general LTFs, this upper bound on dist(f, g) is given
by Theorem 7; however in special cases other structural results may give even stronger bounds. In partic-
ular, a structural result of [BDJ+98] gives that if f is an LTF with integer weights of magnitude bounded
by poly(n), then as long as the Chow distance between f and g is ε/poly(n), it must be the case that
dist(f, g) ≤ ε. Hence our algorithm performs extremely well for such LTFs f : given the (approximate)
Chow parameters of an LTF f with poly(n) integer weights, it outputs an LBF g with dist(f, g) ≤ ε. Given
g, it is trivial to obtain a LTF f∗ such that dist(f, f∗) ≤ 2ε. Thus, for poly(n)-weight LTFs, we obtain a
FPRAS. (See Theorem 33 for a detailed statement of this result.)

Discussion. It is interesting to note that the approach underlying Theorem 10 is much more efficient and
significantly simpler than the algorithmic approach of [OS11]. The algorithm in [OS11] roughly works as
follows: In the first step, it constructs a “small” set of candidate LTFs such that at least one of them is close
to f , and in the second step it identifies such an LTF by searching over all such candidates. The first step
proceeds by enumerating over “all” possible weights assigned to the “high influence” variables. This brute
force search makes the [OS11] algorithm very inefficient. Moreover, its proof of correctness requires some
sophisticated spectral results from [MORS10], which make the approach rather complicated.

In this work, our algorithm is based on a boosting-based approach, which is novel in this context. Our
approach is much more efficient than the brute force search of [OS11] and its analysis is much simpler,
since it completely bypasses the spectral results of [MORS10]. We also note that the algorithm of [OS11]
crucially depends on the fact that the relation between Chow distance and distance has no dependence on n.
(If this was not the case, the approach would not lead to a polynomial time algorithm.) Our boosting-based
approach is quite robust, as it has no such limitation. This fact is crucial for us to obtain the aforementioned
FPRAS for small-weight LTFs.

While we are not aware of any prior results similar to Theorem 10 being stated explicitly, we note that
weaker forms of our theorem can be obtained from known results. In particular, Trevisan et al. [TTV09]
describe an algorithm that given oracle access to a Boolean function f , ε′ > 0, and a set of functions
H = {h1, h2, . . . , hk}, efficiently finds a bounded function g that for every i ≤ n satisfies |E[f ·hi]−E[g ·
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hi]| ≤ ε′. One can observe that if H = {1, x1, . . . , xn}, then the function g returned by their algorithm is in
fact an LBF and that the oracle access to f can be replaced with approximate values of E[f · hi] for every
i. Hence, the algorithm in [TTV09], applied to the set of functions H = {1, x1, x2, . . . , xn}, would find
an LBF g which is close in Chow distance to f . A limitation of this algorithm is that, in order to obtain an
LBF which is ∆-close in Chow distance to f , it requires that every Chow parameter of f be given to it with
accuracy of O(∆/

√
n). In contrast, our algorithm only requires that the total distance of the given vector to

~χf is at most ∆/6. In addition, the bound on the integer weight approximation of LTFs that can be obtained
from the algorithm in [TTV09] is linear in n3/2, whereas we obtain the optimal dependence of

√
n.

The algorithm in [TTV09] is a simple adaptation of the hardcore set construction technique of Impagli-
azzo [Imp95]. Our algorithm is also based on the ideas from [Imp95] and, in addition, uses ideas from the
distribution-specific boosting technique in [Fel10].

Our algorithm can be seen as an instance of a more general approach to learning (or approximating)
a function that is based on constructing a bounded function with the given Fourier coefficients. Another
instance of this new approach is the recent algorithm for learning a certain class of polynomial threshold
functions (which includes polynomial-size DNF formulae) from low-degree Fourier coefficients [Fel12].
We note that the algorithm in [Fel12] is based on an algorithm similar to ours. However, like the algorithm
in [TTV09], it requires that every low-degree Fourier coefficient be given to it with high accuracy. As a
result it would be similarly less efficient in our application.

Organization. In Section 2 we record some mathematical preliminaries that will be used throughout the
paper. In Section 3 we present some observations regarding the complexity of solving the Chow parameters
problem exactly and give an LP–based 2O(n)-time algorithm for it. Sections 4 and 5 contain the proof of our
main structural result (Theorem 7). In Section 6 we present our main algorithmic ingredient (Theorem 10).
Section 7 puts the pieces together and proves our main theorem (Theorem 1) and our other result (Theo-
rem 2), while Section 8 presents the consequences of our results to learning theory. Finally, in Section 9 we
conclude the paper and present a few interesting research directions.

2 Mathematical Preliminaries

2.1 Probabilistic Facts. We require some basic probability results including the standard additive Ho-
effding bound:

Theorem 11. Let X1, . . . , Xn be independent random variables such that for each j ∈ [n], Xj is supported
on [aj , bj ] for some aj , bj ∈ R, aj ≤ bj . Let X =

∑n
j=1Xj . Then, for any t > 0, Pr

[
|X −E[X]| ≥ t

]
≤

2 exp
(
−2t2/

∑n
j=1(bj − aj)2

)
.

The Berry-Esseen theorem (see e.g., [Fel68]) gives explicit error bounds for the Central Limit Theorem.
The following quantitative version of the theorem with an improved constant follows from [Shi86]:

Theorem 12. (Berry-Esseen) Let X1, . . . , Xn be independent random variables satisfying E[Xi] = 0 for

all i ∈ [n],
√∑

iE[X2
i ] = σ, and

∑
iE[|Xi|3] = ρ3. Let S = (X1 + · · · + Xn)/σ and let F denote the

cumulative distribution function (cdf) of S. Then supx |F (x) − Φ(x)| ≤ ρ3/σ
3 where Φ denotes the cdf of

the standard Gaussian random variable.

For us, the most important consequence of the Berry-Esseen theorem is its application in proving anti-
concentration for a weighted sum of Bernoulli random variables. To describe the application, we need to
define the notion of regularity for a vector in Rn.
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Definition 13 (regularity). Fix τ > 0. We say that a vector w = (w1, . . . , wn) ∈ Rn is τ -regular if
maxi∈[n] |wi| ≤ τ‖w‖ = τ

√
w2

1 + · · ·+ w2
n. A linear form w · x is said to be τ -regular if w is τ -regular,

and similarly an LTF is said to be τ -regular2 if it is of the form sign(w · x− θ) where w is τ -regular.

Regularity is a helpful notion because if w is τ -regular then the Berry-Esseen theorem (stated above)
tells us that for uniform x ∈ {−1, 1}n, the linear form w · x is “distributed like a Gaussian up to error
τ .” This can be useful for many reasons; in particular, it will let us exploit the strong anti-concentration
properties of the Gaussian distribution. The next fact states this precisely.

Fact 14. Let w = (w1, . . . , wn) be a τ -regular vector in Rn and write σ to denote ‖w‖2. Then for any

interval [a, b] ⊆ R, we have
∣∣Pr[

∑n
i=1wixi ∈ (a, b]] − Φ([a/σ, b/σ])

∣∣ ≤ 2τ , where Φ([c, d])
def
= Φ(d) −

Φ(c). In particular, it follows that

Pr
[ n∑
i=1

wixi ∈ (a, b]
]
≤ |b− a|/σ + 2τ.

2.2 Useful facts about affine spaces. A subset V ⊆ Rn is said to be an affine subspace if it is closed
under affine combinations of vectors in V . Equivalently, V is an affine subspace of Rn if V = X + b where
b ∈ Rn and X is a linear subspace of Rn. The affine dimension of V is the same as the dimension of the
linear subspace X . A hyperplane in Rn is an affine space of dimension n− 1. Throughout the paper we use
bold capital letters such asH to denote hyperplanes.

In this paper whenever we refer to a “subspace” we mean an affine subspace unless explicitly otherwise
indicated. The dimension of an affine subspace V is denoted by dim(V ). Similarly, for a set S ⊆ Rn, we
write span(S) to denote the affine span of S, i.e.,

span(S) = {s+
m∑
i=1

wi(x
i − yi) | s, xi, yi ∈ S,wi ∈ R,m ∈ N}.

The following very useful fact about affine spaces was proved by Odlyzko [Odl88].

Fact 15. [Odl88] Any affine subspace of Rn of dimension d contains at most 2d elements of {−1, 1}n.

3 On the Exact Chow Parameters Problem

In this section we make some observations regarding the complexity of the exact version of the Chow
parameters problem and present a simple (albeit exponential time) algorithm for it, that beats brute-force
search.

3.1 Proof of Chow’s Theorem. For completeness we state and prove Chow’s theorem here:

Theorem 16 ([Cho61]). Let f : {−1, 1}n → {−1, 1} be an LTF and let g : {−1, 1}n → [−1, 1] be a
bounded function such that ĝ(j) = f̂(j) for all 0 ≤ j ≤ n. Then g = f .

Proof. Write f(x) = sign(w0 + w1x1 + · · ·+ wnxn), where the weights are scaled so that
∑n

j=0w
2
j = 1.

We may assume without loss of generality that |w0 + w1x1 + · · · + wnxn| 6= 0 for all x. (If this is not

2Strictly speaking, τ -regularity is a property of a particular representation and not of a threshold function, which could have
different representations some of which are τ -regular and some of which are not. The particular representation we are concerned
with will always be clear from context.
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the case, first translate the separating hyperplane by slightly perturbing w0 to make it hold; this can be done
without changing f ’s value on any point of {−1, 1}n.) Now we have

0 =
n∑
j=0

wj(f̂(j)− ĝ(j))

= E[(w0 + w1x1 + · · ·+ wnxn)(f(x)− g(x))]

= E[|f(x)− g(x)| · |w0 + w1x1 + · · ·+ wnxn|].

The first equality is by the assumption that f̂(j) = ĝ(j) for all 0 ≤ j ≤ n, the second equality is linearity
of expectation (or Plancherel’s identity), and the third equality uses the fact that

sign(f(x)− g(x)) = f(x) = sign(w0 + w1x1 + · · ·+ wnxn)

for any bounded function g with range [−1, 1]. But since |w0 + w1x1 + · · · + wnxn| is always strictly
positive, we must have Pr[f(x) 6= g(x)] = 0 as claimed.

3.2 An exact 2O(n)–time algorithm. Let us start by pointing out that it seems unlikely that the Chow
Parameters problem can be solved exactly in polynomial time. Note that even checking the correctness
of a candidate solution is ]P-complete, because computing f̂(0) is equivalent to counting 0-1 knapsack
solutions. This suggests (but does not logically imply) that the exact problem is intractable; characterizing
its complexity is an interesting open problem (see Section 9).

The naive brute-force approach (enumerate all possible n-variable LTFs, and for each one check whether
it has the desired Chow parameters) requires 2Θ(n2) time. The following proposition gives an improved
(albeit exponential time) algorithm:

Proposition 17. The Chow parameters problem can be solved exactly in time 2O(n).

Proof. Let α = (α0, α1, . . . , αn) be the target Chow vector; we are given the promise that there exists an
LTF f : {−1, 1}n → {−1, 1} such that ~χf = α. Our goal is to output (a weights-based representation of)
the function f . Let g : {−1, 1}n → [−1, 1] be a bounded function that has the same Chow parameters as
f , i.e., ~χg = α. We claim that g is a feasible solution to an appropriate linear program with 2n variables
and O(2n) constraints. Indeed, for every x ∈ {−1, 1}n we have a variable g(x) and the constraints are as
follows: For all x ∈ {−1, 1}n we include the constraint −1 ≤ g(x) ≤ 1. We also include the (n+ 1) linear
constraints Ex[g(x)xi] ≡ 2−n

∑
x∈{−1,1}n g(x)xi = αi, i = 0, 1, . . . , n (where x0 ≡ 1). Chow’s theorem

stated above implies that the aforementioned linear program has a unique feasible solution, corresponding
to the truth table of the target LTF f . That is, the unique solution of the linear program will be integral and
is identical to the target LTF f . Since the size of the linear program is 2O(n) and linear programming is in
P, the truth table of f can thus be computed in time 2O(n).

A weight-based representation of f as sign(w·x−θ) can then be obtained straightforwardly in time 2O(n)

by solving another linear program with variables (w, θ) and 2n constraints, one for each x ∈ {−1, 1}n.

We point out that our main algorithmic result also yields an algorithm for the exact Chow parameters
problem that beats brute-force search, in particular it runs in time 2O(n logn). (See Theorem 33 and the
remark following its statement.)

4 Proof overview of main structural result: Theorem 7

In this section we provide a detailed overview of the proof of Theorem 7, restated here for convenience:
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Theorem 7 (Main Structural Result). Let f : {−1, 1}n → {−1, 1} be an LTF and g : {−1, 1}n → [−1, 1]

be any bounded function. If dChow(f, g) ≤ ε then dist(f, g) ≤ 2
−Ω

(
3
√

log(1/ε)
)

.

We give an informal overview of the main ideas of the proof of Theorem 7 in Section 4.1, and then
proceed with a detailed outline of Theorem 7 in Section 4.2.

4.1 Informal overview of the proof. We first note that throughout the informal explanation given in this
subsection, for the sake of clarity we restrict our attention to the case in which g : {−1, 1}n → {−1, 1} is a
Boolean rather than a bounded function. In the actual proof we deal with bounded functions using a suitable
weighting scheme for points of {−1, 1}n (see the discussion before Fact 25 near the start of the proof of
Theorem 7).

To better explain our approach, we begin with a few words about how Theorem 1.6 of [OS11] (the only
previously known statement of this type that is “independent of n”) is proved. The key to that theorem is
a result on approximating LTFs using LTFs with “good anti-concentration”; more precisely, [OS11] shows
that for any LTF f there is an LTF f ′(x) = sign(v · x− ν), ‖v‖ = 1, that is extremely close to f (Hamming
distance roughly 2−1/ε) and which has “moderately good anticoncentration at radius ε,” in the sense that
Pr[|v · x− ν| ≤ ε] ≤ Õ(1/

√
log(1/ε)). Given this, Theorem 1.6 of [OS11] is proved using a modification

of the proof of the original Chow’s Theorem. However, for this approach based on the original Chow proof
to work, it is crucial that the Hamming distance between f and f ′ (namely 2−1/ε) be very small compared
to the anti-concentration radius (which is ε). Subject to this constraint it seems very difficult to give a
significant quantitative improvement of the approximation result in a way that would improve the bound of
Theorem 1.6 of [OS11].

Instead, we hew more closely to the approach used to prove Theorem 4 of Goldberg [Gol06]. This
approach also involves a perturbation of the LTF f , but instead of measuring closeness in terms of Hamming
distance, a more direct geometric view is taken. In the rest of this subsection we give a high-level explanation
of Goldberg’s proof and of how we modify it to obtain our improved bound.

The key to Goldberg’s approach [Gol06] is a (perhaps surprising) statement about the geometry of
hyperplanes as they relate to the Boolean hypercube. He establishes the following key geometric result (see
Theorem 19 for a precise statement):

If H is any n-dimensional hyperplane such that an α fraction of points in {−1, 1}n lie “very
close” in Euclidean distance (essentially 1/quasipoly(n/α)) to H, then there is a hyperplane
H′ which actually contains all those α2n points of the hypercube.

With this geometric statement in hand, an iterative argument is used to show that if the Hamming distance
between LTF f and Boolean function g is large, then the Euclidean distance between the centers of mass of
(i) the positive examples for f on which f and g differ, and (ii) the negative examples for f on which f and
g differ, must be large; finally, this Euclidean distance between centers of mass corresponds closely to the
Chow distance between f and g.

However, the 1/quasipoly(n) closeness requirement in the key geometric statement means that Gold-
berg’s Theorem 4 not only depends on n, but this dependence is superpolynomial. The heart of our improve-
ment is to combine Goldberg’s key geometric statement with ideas based on the “critical index” of LTFs to
get a version of the statement which is completely independent of n. Roughly speaking, our analogue of
Goldberg’s key geometric statement is the following (a precise version is given as Lemma 20 below):

If H is any n-dimensional hyperplane such that an α fraction of points in {−1, 1}n lie within
Euclidean distance αO(log(1/α)) of H, then there is a hyperplane H′ which contains all but a
tiny fraction of those α2n points of the hypercube.
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Our statement is stronger than Goldberg’s in that there is no dependence on n in the distance bound
from H, but weaker in that we do not guarantee H′ passes through every point; it may miss a tiny fraction
of points. We are able to handle the effect of missing points in the subsequent analysis. Armed with this
improvement, a careful sharpening of Goldberg’s iterative argument (to get rid of another dependence on n,
unrelated to the tiny fraction of points missed byH′) lets us prove Theorem 7.

4.2 Detailed outline of the proof. As discussed in Section 4.1, the key to proving Theorem 7 is an im-
provement of Theorem 3 in [Gol06].

Definition 18. Given a hyperplane H in Rn and β > 0, the β-neighborhood of H is defined as the set of
points in Rn at Euclidean distance at most β fromH.

Theorem 19 (Theorem 3 in [Gol06]). Given any hyperplane in Rn whose β-neighborhood contains a subset
S of vertices of {−1, 1}n, where |S| = α · 2n, there exists a hyperplane which contains all elements of S
provided that

0 ≤ β ≤
(

(2/α) · n5+blog(n/α)c · (2 + blog(n/α)c)!
)−1

.

Before stating our improved version of the above theorem, we define the set U = {0, e1, . . . , en} where
0 ∈ Rn is the all zeros vector and ei ∈ Rn is the unit vector in the ith direction.

Our improved version of Theorem 19 is the following:

Lemma 20. There exists a constant C1 such that for every hyperplane H in Rn whose β-neighborhood
contains a subset S of vertices of {−1, 1}n, where |S| = α · 2n, and any 0 < κ < α/2, there exists a
hyperplaneH′ in Rn that contains a subset S∗ ⊆ S of cardinality at least (α− κ) · 2n provided that

0 < β ≤ β0
def
= (log(1/κ))−1/2 · 2−

√
log log(1/κ) · αC1·log(1/α).

Moreover, the coefficient vector definingH′ has at most

C1 · (1/α2) · (log log(1/κ) + log2(1/α))

nonzero coordinates. Further, for any x ∈ U , if x lies onH then x lies onH′ as well.

Discussion. We note that while Lemma 20 may appear to be incomparable to Theorem 19 because it “loses”
κ2n points from the set S, in fact by taking κ = 1/2n+1 it must be the case that our S∗ is the same as S,
and with this choice of κ, Lemma 20 gives a strict quantitative improvement of Theorem 19. (We stress that
for our application, though, it will be crucial for us to use Lemma 20 by setting the κ parameter to depend
only on α independent of n.) We further note that in any statement like Lemma 20 that does not “lose” any
points from S, the bound on β must necessarily depend on n; we show this in Appendix A. Finally, the
condition at the end of Lemma 20 (that if x ∈ U lies onH, then it lies onH′ as well) allows us to obtain an
analogous result in any affine subspace of Rn instead of Rn. This is necessary for the iterative application
of Lemma 20 in the proof of Theorem 7.

We give the detailed proof of Lemma 20 in Section 5.2. We now briefly sketch the main idea underlying
the proof of the lemma. At a high level, the proof proceeds by reducing the number of variables from n down
to m = O

(
(1/α2) · log(1/β)

)
followed by an application of Theorem 42, a generalization of Theorem 19

proved in Appendix B, in Rm. (As we will see later, we use Theorem 42 instead of Theorem 19 because we
need to ensure that points of U which lie on H continue to lie on H′.) The reduction uses the notion of the
τ -critical index applied to the vector w definingH. (See Section 5.1 for the relevant definitions.)

The idea of the proof is that for coordinates i in the “tail” of w (intuitively, where |wi| is small) the value
of xi does not have much effect on d(x,H), and consequently the condition of the lemma must hold true
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in a space of much lower dimension than n. To show that tail coordinates of x do not have much effect on
d(x,H), we do a case analysis based on the τ -critical index c(w, τ) of w to show that (in both cases) the
2-norm of the entire “tail” of w must be small. If c(w, τ) is large, then this fact follows easily by properties
of the τ -critical index. On the other hand, if c(w, τ) is small we argue by contradiction as follows: By the
definition of the τ -critical index and the Berry-Esseen theorem, the “tail” of w (approximately) behaves like
a normal random variable with standard deviation equal to its 2-norm. Hence, if the 2-norm was large, the
entire linear form w · x would have good anti-concentration, which would contradict the assumption of the
lemma. Thus in both cases, we can essentially ignore the tail and make the effective number of variables be
m which is independent of n.

As described earlier, we view the geometric Lemma 20 as the key to the proof of Theorem 7; however,
to obtain Theorem 7 from Lemma 20 requires a delicate iterative argument, which we give in full in the
following section. This argument is essentially a refined version of Theorem 4 of [Gol06] with two main
modifications: one is that we generalize the argument to allow g to be a bounded function rather than a
Boolean function, and the other is that we get rid of various factors of

√
n which arise in the [Gol06]

argument (and which would be prohibitively “expensive” for us). We give the detailed proof in Section 5.3.

5 Proof of Theorem 7

In this section we provide a detailed proof of our main structural result (Theorem 7).

5.1 Useful Technical Tools. As described above, a key ingredient in the proof of Theorem 7 is the notion
of the “critical index” of an LTF f . The critical index was implicitly introduced and used in [Ser07] and
was explicitly used in [DS09, DGJ+10, OS11] and other works. To define the critical index we need to first
recall the definition of “regularity” (see Definition 13). Intuitively, the critical index of w is the first index i
such that from that point on, the vector (wi, wi+1, . . . , wn) is regular. A precise definition follows:

Definition 21 (critical index). Given a vector w ∈ Rn such that |w1| ≥ · · · ≥ |wn| > 0, for k ∈ [n] we

denote by σk the quantity
√∑n

i=k w
2
i . We define the τ -critical index c(w, τ) of w as the smallest index

i ∈ [n] for which |wi| ≤ τ · σi. If this inequality does not hold for any i ∈ [n], we define c(w, τ) =∞.

The following simple fact states that the “tail weight” of the vector w decreases exponentially prior to
the critical index:

Fact 22. For any vector w = (w1, . . . , wn) such that |w1| ≥ · · · ≥ |wn| > 0 and 1 ≤ a ≤ c(w, τ), we have
σa < (1− τ2)(a−1)/2 · σ1.

Proof. If a < c(w, τ), then by definition |wa| > τ · σa. This implies that σa+1 <
√

1− τ2 · σa. Applying
this inequality repeatedly, we get that σa < (1− τ2)(a−1)/2 · σ1 for any 1 ≤ a ≤ c(w, τ).

5.2 Proof of Lemma 20. Let H = {x ∈ Rn | w · x = θ} where we can assume (by rescaling) that
‖w‖2 = 1 and (by reordering the coordinates) that |w1| ≥ |w2| ≥ . . . ≥ |wn|. Note that the Euclidean

distance of any point x ∈ Rn from H is |w · x − θ|. Let us also define V def
= H ∩ U . Set τ def

= α/4 (for
conceptual clarity we will continue to use “τ” for as long as possible in the arguments below). We note that
we can assume that all weights are non-zero since we can project the problem to coordinates where H has
non-zero weights. This does not affect distances or our bounds. We can therefore define the τ -critical index
c(w, τ) of the vector w ∈ Rn.

Fix the integer parameterK0
def
= C2 · (1/τ2) · log(1/β) for a constant C2 to be chosen later and letK1 =

min{c(w, τ),K0}. We partition [n] into a set of “head” coordinates H = [K1] and the complementary
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set of “tail” coordinates T = [n] \ H . We write w as (wH , wT ) and likewise for x. (We can assume that
K1 ≤ n since otherwise the lemma follows immediately from Theorem 19.) We now prove by case analysis
that ‖wT ‖2 must be small.

Claim 23. We have ‖wT ‖2 ≤ 8β/α.

Proof.
Case I: c(w, τ) > K0. In this case, |H| = C2 · (1/τ2) · log(1/β) and it follows from Fact 22 that for large
enough constant C2, ‖wT ‖ ≤ β ≤ 8β/α.
Case II: c(w, τ) ≤ K0. In this case, |H| = c(w, τ). We use the fact that wT is τ -regular to deduce that the
norm of the tail must be small.

Suppose for the sake of contradiction that

‖wT ‖2 > 2β/(α− 3τ) = 8β/α.

By the Berry-Esseen theorem (Theorem 12, or more precisely Fact 14), for all δ > 0 we have

supt∈RPrxT [|wT · xT − t|<δ] ≤
2δ

‖wT ‖
+ 2τ.

By setting δ def
= (α− 3τ)‖wT ‖/2 > β we get that

supt∈RPrxT [|wT · xT − t|<δ] < α,

and consequently

Prx[|w · x− θ| ≤ β] ≤ sup
t∈R

PrxT [|wT · xT − t| ≤ β]

≤ sup
t∈R

PrxT [|wT · xT − t|<δ]

< α

which contradicts the existence of the set S in the statement of the lemma.

By the Hoeffding bound, for a 1− κ fraction of x ∈ {−1, 1}n we have

|wH · xH − θ| ≤ |w · x− θ|+ |wT · xT | ≤ |w · x− θ|+ β′

where β′ = C3 · (β/α) ·
√

log(1/κ) for a sufficiently large constant C3.
By the assumption of the lemma, there exists a set S ⊆ {−1, 1}n of cardinality at least α · 2n such that

for all x ∈ S we have |w · x− θ| ≤ β. A union bound and the above inequality imply that there exists a set
S∗ ⊆ S of cardinality at least (α− κ) · 2n with the property that for all x ∈ S∗, we have

|wH · xH − θ| ≤ β + β′.

Also, any x ∈ U satisfies ‖xT ‖ ≤ 1. Hence for any x ∈ V , we have that

|wH · xH − θ| ≤ |w · x− θ|+ |wT · xT | = |wT · xT |
≤ ‖wT ‖ · ‖xT ‖ ≤ 8β/α ≤ β′.

Define the projection mapping φH : Rn → R|H| by φH(x) = xH and consider the image of S∗, i.e.,

S′
def
= φH(S∗). It is clear that |S′| ≥ (α− κ) · 2|H| and that for all xH ∈ S′, we have

|wH · xH − θ| ≤ β + β′ ≤ 2β′.
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Similarly, if V ′ is the image of V under φH , then for every xH ∈ V ′ we have |wH · xH − θ| ≤ β′. It is also
clear that ‖wT ‖ < 1/2 and hence ‖wH‖ > 1/2. Thus for every xH ∈ (S′ ∪ V ′) we have∣∣∣∣wH · xH‖wH‖

− θ

‖wH‖

∣∣∣∣ ≤ 4β′.

We now define the |H|-dimensional hyperplane HH as HH
def
= {xH ∈ R|H| | wH · xH = θ}. As all

points in S′ ∪ V ′ are in the 4β′-neighborhood of HH , we may now apply Theorem 42 for the hyperplane
HH over R|H| to deduce the existence of an alternate hyperplane H′H = {xH ∈ R|H| | vH · xH = ν} that
contains all points in S′∪V ′. The only condition we need to verify in order that Theorem 42 may be applied
is that 4β′ is upper bounded by

β1
def
=

(
2

α− κ
· |H|5+blog(|H|/(α−κ))c · (2 + blog(|H|/(α− κ))c)!

)−1

.

Recalling that, |H| ≤ K0 and κ < α/2, we obtain that β1 ≤ (α/K0)C4 log(K0/α) for some large enough
constant C4. Using K0 = C2 · (4/α)2 · log(1/β) and β′ = C3β

√
log(1/κ)/α, we need to verify that

β ≤ β1α/(4C3 ·
√

log(1/κ)) ≤
(
α/(4C3 ·

√
log(1/κ))

)
·
(

α3

16 · C2 · log(1/β)

)C4 log(16C2·log(1/β)/α3)
.

At this point, we need the following elementary inequality:

Fact 24. For a, b ∈ (0, 1), (ab)log(1/a)+log(1/b) ≥ a2 log(1/a) · b2 log(1/b).

Proof.

(ab)log(1/a)+log(1/b) = 2− log2(1/a)−log2(1/b)−2 log(1/a)·log(1/b)

≥ 2−2 log2(1/a)−2 log2(1/b)

= a2 log(1/a) · b2 log(1/b),

where the inequality is the arithmetic-geometric mean inequality.

Using Fact 24, we get that, for a sufficiently large constant C5, it is sufficient to ensure that

β ≤ (log(1/κ))−1/2 · αC5 log(1/α) · log(1/β)−C5 log log(1/β).

For a sufficiently small β, 2−
√

log(1/β) ≤ log(1/β)−C5 log log(1/β) giving sufficient condition:

β ≤ (log(1/κ))−1/2 · αC5 log(1/α) · 2−
√

log(1/β). (1)

Let
β0

def
= (log(1/κ))−1/2 · 2−

√
log log(1/κ) · αC1 log(1/α) ,

for C1 to be chosen later. The square root function is subadditive and thus we get

2−
√

log(1/β0) ≥ 2−
√
C1 log2(1/α)+log log(1/κ) ≥ 2−

√
C1 log(1/α) · 2−

√
log log(1/κ)

and therefore for a sufficiently large constant C1 it holds that

(log(1/κ))−1/2 · αC5 log(1/α) · 2−
√

log(1/β0) ≥ (log(1/κ))−1/2 · 2−
√

log log(1/κ) · αC5 log(1/α)+
√
C1 ≥ β0.

Hence we obtained that condition (1) holds for β = β0 and so also for any β ≤ β0. This implies the desired
upper bound on 4β′.

Thus, we get a new hyperplane H′H = {xH ∈ R|H| | vH · xH = ν} that contains all points in S′ ∪ V ′.
It is then clear that the n-dimensional hyperplane H′ = {x ∈ Rn | vH · xH = ν} contains all the points
in S∗ = (φH)−1(S′) and the points in V , and that the vector vH defining H′ has the claimed number of
nonzero coordinates, concluding the proof of Lemma 20.

13



5.3 Proof of Theorem 7. As mentioned earlier, our proof is essentially a refined version of the proof of
Theorem 4 of [Gol06]. The proof establishes the contrapositive of Theorem 7; it shows that if dist(f, g) is
large then dChow(f, g) must also be large.

To aid the reader in understanding our proof, let us recall the high level structure of Goldberg’s argu-
ment (which our argument follows quite closely). The first step in the argument is to show that the Chow
distance dChow(f, g) corresponds to a Euclidean distance between two points µ+ and µ− in Rn which are
the “centers of mass” of the “false positive” points V 0

+ and the “false negative” points V 0
− respectively (see

Proposition 26). Hence, in order to show that the Chow distance is large, it is enough to show that µ+ and
µ− are far apart, and to do this it is enough to lower bound (µ+ − µ−) · η for any unit vector η. The proof
attempts to do this in a sequence of stages; if any stage succeeds then we get the desired conclusion, and a
dimension argument is used to show that after not too many stages, one of the stages must succeed.

In more detail, the analysis of the first stage works as follows: Fix a separating hyperplane A0 and
consider the unit vector `0 which is normal to A0. If many points in V 0 := V 0

+ ∪ V 0
− lie far from A0 then

it is not hard to lower bound (µ+ − µ−) · η (see Claim 29). On the other hand, if very few points in V 0 lie
far from A0, then since |V 0| is large (essentially of size at least ε2n; recall that by assumption dist(f, g) is
large) it must be the case that almost all the points in V 0 lie very close to the hyperplane A0. This means
that we may apply the key geometric lemma, Lemma 20, to conclude that there is a hyperplane A1 which
passes through almost all of the points in V0.

In the next stage, essentially the same argument as above is carried out in the affine space spanned by the
hyperplane A1. As above, it is argued that either a large set of points lies far from a separating hyperplane
(in which case the Euclidean distance between µ+ and µ− can be lower bounded as above, see Claim 30),
or else we can again apply Lemma 20 to conclude that there is a hyperplane A2 – which is an (n − 2)-
dimensional affine subspace of Rn – which passes through almost all of the points in V0. Continuing this
reasoning for O(log(1/ε)) stages, the argument gives that there is an (n−O(log(1/ε)))-dimensional affine
subspace of Rn that contains Ω(ε) · 2n points of V0; but this contradicts a well-known upper bound on the
number of points in {−1, 1}n that any affine subspace of Rn of a given dimension can contain (see Fact 15).
This contradiction concludes the argument.

The arguments sketched above are those used by Goldberg in the proof of his Theorem 4, and indeed
we follow the same high level steps in our proof; however there are two significant ways in which our proof
differs from that of Goldberg. One of these ways is that we generalize Goldberg’s arguments to allow g to
be a bounded function rather than a Boolean function (this is why our detailed arguments given below use
the weight functionW(x)). The second is that we carefully get rid of various factors of

√
n which arise in

the [Gol06] argument (and which would be prohibitively “expensive” for us). Lemma 44 (see Appendix C)
is useful for this purpose.

We are now ready to prove Theorem 7.

Proof of Theorem 7. Let f : {−1, 1}n → {−1, 1} be an LTF and g : {−1, 1}n → [−1, 1] be an arbitrary
bounded function. Assuming that dist(f, g) = ε, we will prove that dChow(f, g) ≥ δ = δ(ε)=εO(log2(1/ε)).

Let us define V+ = {x ∈ {−1, 1}n | f(x) = 1, g(x) < 1} and V− = {x ∈ {−1, 1}n | f(x) =
−1, g(x) > −1}. Also, for every point x ∈ {−1, 1}n, we associate a weightW(x) = |f(x)− g(x)| and for

a set S, we defineW(S)
def
=
∑

x∈SW(x).
It is clear that V+∪V− is the disagreement region between f and g and that thereforeW(V+)+W(V−) =

ε · 2n. We claim that without loss of generality we may assume that (ε − δ) · 2n−1 ≤ W(V+),W(V−) ≤
(ε + δ) · 2n−1. Indeed, if this condition is not satisfied, we have that |f̂(0) − ĝ(0)| > δ which gives the
conclusion of the theorem.

We record the following straightforward fact which shall be used several times subsequently.

Fact 25. ForW as defined above, for all X ⊆ {−1, 1}n, |X| ≥ W(X)/2.
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We start by defining V 0
+ = V+, V 0

− = V− and V 0 = V 0
+ ∪ V 0

−. The following simple proposition will
be useful throughout the proof, since it characterizes the Chow distance between f and g (excluding the
degree-0 coefficients) as the (normalized) Euclidean distance between two well-defined points in Rn:

Proposition 26. Let µ+ =
∑

x∈V+W(x) · x and µ− =
∑

x∈V−W(x) · x. Then
∑n

i=1(f̂(i) − ĝ(i))2 =

2−2n · ‖µ+ − µ−‖2.

Proof. For i ∈ [n] we have that f̂(i) = E[f(x)xi] and hence f̂(i) − ĝ(i) = E[(f(x) − g(x))xi]. Hence
2n(f̂(i) − ĝ(i)) =

∑
x∈V+W(x) · xi −

∑
x∈V−W(x) · xi = (µ+ − µ−) · ei where (µ+ − µ−) · ei is the

inner product of the vector µ+ − µ− with the unit vector ei. Since e1, . . . , en form a complete orthonormal
basis for Rn, it follows that

‖µ+ − µ−‖2 = 22n
∑
i∈[n]

(f̂(i)− ĝ(i))2

proving the claim.

If η ∈ Rn has ‖η‖ = 1 then it is clear that ‖µ+ − µ−‖ ≥ (µ+ − µ−) · η. By Proposition 26, to lower
bound the Chow distance dChow(f, g), it suffices to establish a lower bound on (µ+ − µ−) · η for a unit
vector η of our choice.

Before proceeding with the proof we fix some notation. For any line ` in Rn and point x ∈ Rn,
we let `(x) denote the projection of the point x on the line `. For a set X ⊆ Rn and a line ` in Rn,

`(X)
def
= {`(x) : x ∈ X}. We use ̂̀to denote the unit vector in the direction of ` (its orientation is irrelevant

for us).

Definition 27. For a functionW : {−1, 1}n → [0,∞), a set X ⊆ {−1, 1}n is said to be (ε, ν)-balanced if
(ε− ν)2n−1 ≤ W(X) ≤ (ε+ ν)2n−1.

Whenever we say that a set X is (ε, ν)-balanced, the associated functionW is implicitly assumed to be
the one defined at the start of the proof of Theorem 7. Recall that as noted above, we may assume that the
sets V+ and V− are balanced since otherwise the conclusion of the theorem follows easily.

The following technical proposition will be useful during the course of the proof; later we will apply it
takingX1 to be V 0

+ andX2 to be V 0
−. Intuitively, it says that that if balanced setsX1 andX2 are (a) separated

by a point q after projection onto a line `, and (b) contain many points which (after projection onto `) lie far
from q, then the unit vector in the direction of ` “witnesses” the fact that the centers of mass of X1 and X2

are far from each other.

Proposition 28. Let X1, X2 ⊆ {−1, 1}n be (ε, ν)-balanced sets where ν ≤ ε/8. Let ` be a line in Rn
and q ∈ ` be a point on ` such that the sets `(X1) and `(X2) lie on opposite sides of q. Suppose that

S
def
= {x | x ∈ X1 ∪ X2 and ‖`(x) − q‖ ≥ β}. If W(S) ≥ γ2n, then for µ1 =

∑
x∈X1

W(x) · x and
µ2 =

∑
x∈X2

W(x) · x, we have

|(µ1 − µ2) · ̂̀| ≥ (βγ − ν
√

2 ln(16/ε))2n.

In particular, for ν
√

2 ln(16/ε) ≤ βγ/2, we have |(µ1 − µ2) · ̂̀| ≥ (βγ/2)2n.

Proof. We may assume that the projection `(x) of any point x ∈ X1 on ` is of the form q + λx ̂̀where
λx > 0, and that the projection `(x) of any point x ∈ X2 on ` is of the form q− λx ̂̀where λx > 0. We can
thus write

(µ1 − µ2) · ̂̀ =
∑
x∈X1

W(x)(q · ̂̀+ λx)−
∑
x∈X2

W(x)(q · ̂̀− λx)

= (W(X1)−W(X2)) q · ̂̀+
∑

x∈X1∪X2

W(x) · λx.
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By the triangle inequality we have∣∣∣(µ1 − µ2) · ̂̀∣∣∣ ≥ ∑
x∈X1∪X2

W(x) · λx − |q · ̂̀| |(W(X1)−W(X2))|

so it suffices to bound each term separately. For the first term we can write∑
x∈X1∪X2

W(x) · λx ≥
∑
x∈S
W(x) · λx ≥ βγ2n.

To bound the second term, we first recall that (by assumption) |W(X1)−W(X2)| ≤ ν2n. Also, we claim
that |q · ̂̀| <√2 ln(16/ε). This is because otherwise the Hoeffding bound implies that the function defined
by g(x) = sign(x · ̂̀− q · ̂̀) will be ε/8 close to a constant function on {−1, 1}n. In particular, at least one
of |X1|, |X2| must be at most (ε/8)2n. However, by Fact 25, for i = 1, 2 we have that |Xi| ≥ W(Xi)/2 ≥
(ε/4− ν/4)2n > (ε/8)2n resulting in a contradiction. Hence it must be the case that |q · ̂̀| <√2 ln(16/ε).
This implies that |(µ1 − µ2) · ̂̀| ≥ (βγ − ν

√
2 ln(16/ε))2n and the proposition is proved.

We consider a separating hyperplane A0 for f and assume (without loss of generality) that A0 does not
contain any points of the unit hypercube {−1, 1}n. Let A0 = {x ∈ Rn | w ·x = θ}, where ‖w‖ = 1, θ ∈ R
and f(x) = sign(w · x− θ).

Consider a line `0 normal to A0, so w is the unit vector defining the direction of `0 that points to
the halfspace f−1(1). As stated before, the exact orientation of `0 is irrelevant to us and the choice of
orientation here is arbitrary. Let q0 ∈ Rn be the intersection point of `0 and A0. Then we can write the line
`0 as `0 = {p ∈ Rn | p = q0 + λw, λ ∈ R}.

Define β def
= εC2·log(1/ε) for a constant C2 to be chosen later and consider the set of points

S0 = {x : x ∈ V 0 | ‖`0(x)− q0‖ ≥ β}

where we recall that V 0 has been defined to be the disagreement region between f and g. The following
claim states that ifW(S0) is not very small, we get the desired lower bound on the Chow distance. It follows
from the geometric characterization of Chow distance, Proposition 26, and Proposition 28.

Claim 29. Suppose that W(S0) ≥ γ0 · 2n where γ0
def
= β4 log(1/ε)−2 · ε. Then dChow(f, g) ≥ δ, where

δ
def
= β4 log(1/ε).

Proof. To prove the desired lower bound, we will apply Proposition 26. Consider projecting every point in
V 0 on the line `0. Observe that the projections of V 0

+ are separated from the projections of V 0
− by the point

q0. Also, we recall that the sets V 0
+ and V 0

− are (ε, δ) balanced. Thus, for µ+ =
∑

x∈V 0
+
W(x) · x and µ− =∑

x∈V 0
−
W(x)·x, we can apply Proposition 28 to get that |(µ+−µ−)·w| ≥ (βγ0−δ

√
2 ln(16/ε))2n ≥ δ2n.

This implies that ‖µ+ − µ−‖2 ≥ δ222n and using Proposition 26, this proves that dChow(f, g) ≥ δ.

If the condition of Claim 29 is not satisfied, then we have thatW(V 0 \ S0) ≥ (ε − γ0)2n. By Fact 25,
we have |V 0 \S0| ≥ (ε−γ0)2n−1. We now apply Lemma 20 to obtain another hyperplane A1 which passes

through all but κ1 · 2n points (κ1
def
= γ0/2) in V 0 \ S0. We note that, for a sufficiently large constant C2, the

condition of the lemma is satisfied, as log(1/κ1) = poly(log(1/ε)) and |V 0 \ S0| > (ε/4) · 2n.
From this point onwards, our proof uses a sequence of blog(1/ε)c cases, each of which follows along

essentially the same lines as the “zeroth” case analyzed above. To this end, we define γj = β4 log(1/ε)−2(j+1)·
ε. At the beginning of case j, we will have an affine space Aj of dimension n− j such thatW(V 0 ∩Aj) ≥
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(ε− 2(
∑j−1

`=0 γ`))2
n. We note that this is indeed satisfied at the beginning of case 1. To see this, recall that

W(V 0 \ S0) > (ε− γ0)2n. Also, we have that

W((V 0 \ S0) \ (V 0 ∩A1)) ≤ 2|(V 0 \ S0) \ (V 0 ∩A1)|
≤ 2κ12n = γ02n.

These together imply thatW(V 0 ∩A1) ≥ (ε− 2γ0)2n confirming the hypothesis for j = 1.

We next define V j = V 0 ∩ Aj , V j
+ = V j ∩ V+ and V j

− = V j ∩ V−. Let A′j+1 = Aj ∩A0. Note that
Aj 6⊆ A0. This is because Aj contains points from {−1, 1}n as opposed to A0 which does not. Also, Aj
is not contained in a hyperplane parallel to A0 because Aj contains points of the unit hypercube lying on
either side of A0. Hence it must be the case that dim(A′j+1) = n − (j + 1). Let `j be a line orthogonal to
A′j+1 which is parallel to Aj . Again, we observe that the direction of `j is unique.

Our aim is essentially to establish that the conditions of Proposition 28 hold so that we may apply it to
the line `j and thus obtain an analogue of Claim 29 (recall that Proposition 28 played a key role in the proof
of Claim 29). Towards that end, we observe that all points in A′j+1 project to the same point in `j , which we
call qj . Let us define Λj+ = `j(V

j
+) and Λj− = `j(V

j
−). We observe that the sets Λj+ and Λj− are separated

by qj . Next, we define Sj as :
Sj = {x ∈ V j | ‖`j(x)− qj‖2 ≥ β}.

The next claim is analogous to Claim 29. It says that if W(Sj) is not too small, then we get the desired
lower bound on the Chow distance. The underlying ideas are the same as Claim 29 but the proof is slightly
more technical; we postpone it to Appendix C.

Claim 30. For j ≤ log(8/ε), suppose thatW(Sj) ≥ γj ·2n where γj is as defined above. Then dChow(f, g) ≥
δ.

If the hypothesis of Claim 30 fails, then we construct an affine space Aj+1 of dimension n − j − 1

such thatW(V 0 ∩ Aj+1) ≥ (ε − 2
∑j

`=0 γ`)2
n as described next. We recall that U = {0, e1, . . . , en}. It

is obvious there is some subset Yj ⊆ U such that |Yj | = j and span(Aj ∪ Yj) = Rn. Now, let us define

H′j
def
= span(Yj ∪ A′j+1). Clearly, H′j is a hyperplane and every point x ∈ (V 0 ∩ Aj) \ Sj is at a distance

at most β from H′j . This is because every x ∈ (V 0 ∩ Aj) \ Sj is at a distance at most β from A′j+1 and
A′j+1 ⊂ H′j . Also, note that all x ∈ Yj lie onH′j .

Note that W((V 0 ∩ Aj) \ Sj) ≥ (ε − 2
∑j−1

`=0 γ` − γj)2
n. As prior calculation has shown, for j ≤

log(8/ε) we haveW((V 0 ∩ Aj) \ Sj) ≥ (ε − 2
∑j−1

`=0 γ` − γj)2
n ≥ (ε/2)2n. Using Fact 25, we get that

|(V 0 ∩ Aj) \ Sj | ≥ (ε/4)2n. Thus, putting κj = γj/2 and applying Lemma 20, we get a new hyperplane
Hj such that |((V 0 ∩Aj) \ Sj) \ (Hj ∩ V 0)| ≤ (γj/2) · 2n. Using that the range ofW is bounded by 2, we
getW(((V 0∩Aj)\Sj)\ (Hj ∩V 0)) ≤ γj ·2n. Thus, we get thatW(Hj ∩V 0∩Aj) ≥ (ε−2

∑j
`=0 γ`)2

n.
Also, Yj ⊂ Hj .

Let us now define Aj+1 = Aj ∩ Hj . It is clear that W(Aj+1 ∩ V 0) ≥ (ε − 2
∑j

`=0 γ`)2
n. Also,

dim(Aj+1) < dim(Aj). To see this, assume for contradiction that dim(Aj) = dim(Aj+1). This means that
Aj ⊆ Hj . Also, Yj ⊂ Hj . This means that span(Aj ∪ Yj) ⊂ Hj . But span(Aj ∪ Yj) = Rn which cannot
be contained inHj . Thus we have that dim(Aj+1) = dim(Aj)− 1.

Now we observe that taking j = blog(8/ε)c, we have a subspace Aj of dimension n − j which has
W(Aj ∩V 0) ≥ (ε−2

∑j−1
`=0 γ`)2

n > (ε/2)2n. By Fact 25, we have that |Aj ∩V 0| ≥ (ε/4)2n. However, by
Fact 15, a subspace of dimension n− j can contain at most 2n−j points of {−1, 1}n. Since j = blog(8/ε)c,
this leads to a contradiction. That implies that the number of cases must be strictly less than blog(8/ε)c. In
particular, for some j < blog(8/ε)c, it must be the case that |Sj | ≥ γj2

n. For this j, by Claim 30, we get a
lower bound of δ on dChow(f, g). This concludes the proof of Theorem 7.
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6 The Algorithm and its Analysis

6.1 Algorithm and Proof Overview. In this section we give a proof overview of Theorem 10, restated
below for convenience. We give the formal details of the proof in the following subsection.

Theorem 10 (Main Algorithmic Result). There exists a randomized algorithm ChowReconstruct that
for every Boolean function f : {−1, 1}n → {−1, 1}, given ε > 0, δ > 0 and a vector ~α = (α0, α1, . . . , αn)
such that ‖~χf − ~α‖ ≤ ε, with probability at least 1 − δ, outputs an LBF g such that ‖~χf − ~χg‖ ≤ 6ε. The
algorithm runs in time Õ(n2ε−4) · log(1/δ). Further, g is represented by a weight vector κv ∈ Rn+1, where
κ ∈ R and v is an integer vector with ‖v‖ = O(

√
n/ε3).

We now provide an intuitive overview of the algorithm and its analysis. Our algorithm is motivated by
the following intuitive reasoning: since the function α0 +

∑
i∈[n] αi · xi has the desired Chow parameters,

why not just use it to define an LBF g1 as P1(α0 +
∑

i∈[n] αi · xi)? The answer, of course, is that as a result
of applying the truncation operator, the Chow parameters of g1 can become quite different from the desired
vector ~α. Nevertheless, it seems quite plausible to expect that g1 will be better than a random guess.

Given the Chow parameters of g1 we can try to correct them by adding the difference between ~α and ~χg1
to the vector that represents g1. Again, intuitively we are adding a real-valued function h1 = α0 − ĝ1(0) +∑

i∈[n](αi− ĝ1(i)) ·xi that has the Chow parameters that we would like to add to the Chow parameters of g1.
And, again, the truncation operation is likely to ruin our intention, but we could still hope that we got closer
to the vector ~α, and that by repeating this operation we will converge to an LBF with Chow parameters close
to ~α.

While this idea might appear too naive, this is almost exactly what we do in ChowReconstruct. The
main difference between this naive proposal and our actual algorithm is that at step t we actually add only
half the difference between ~α and the Chow vector of the current hypothesis ~χgt . This is necessary in our
proof to offset the fact that ~α is only an approximation to ~χf and the fact that we can only approximate the
Chow parameters of gt. An additional minor modification is required to ensure that the final weight vector
is a multiple of an integer weight vector of length O(

√
n/ε3).

The proof of correctness of this algorithm proceeds roughly as follows. If the difference vector is
sufficiently large (namely, more than a small multiple of the difference between ~χf and ~α) then the linear
function ht defined by this vector can be easily shown to be correlated with f − gt, namely E[(f − gt)ht] ≥
c‖~χgt − ~α‖2 for a constant c > 0. As was shown in [TTV09] and [Fel10] this condition for a Boolean ht
can be used to decrease a simple potential function measuring E[(f − gt)2], the l22 distance of the current
hypothesis to f . One issue that arises is this: while the l22 distance is only reduced if ht is added to gt,
in order to ensure that gt+1 is an LBF, we need to add the vector of difference (used to define ht) to the
weight vector representing gt. To overcome this problem the proof in [TTV09] uses an additional pointwise
counting argument from [Imp95]. This counting argument can be adapted to the real valued ht, but the
resulting argument becomes quite cumbersome. Instead, we augment the potential function in a way that
captures the additional counting argument from [Imp95] and easily generalizes to the real-valued case.

6.2 Proof of Theorem 10. We begin by describing the ChowReconstruct algorithm. The algorithm
builds g through the following iterative process. Let g′0 ≡ 0 and let g0 = P1(g′0). Given gt, the algorithm
approximates each Chow parameter of gt to accuracy ε/(4

√
n+ 1); let (β0, β1, . . . , βn) denote the results.

For each 0 ≤ i ≤ n, define g̃t(i) to be the closest value to βi that ensures that αi − g̃t(i) is an integer
multiple of ε/(2

√
n+ 1). Let χ̃gt = (g̃t(0), . . . , g̃t(n)) denote the resulting vector of coefficients. Note that

‖χ̃gt − ~χgt‖ ≤

√√√√ n∑
i=0

(ε/(2
√
n+ 1))2 = ε/2.
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Define ρ = ‖~α− χ̃gt‖. If ρ ≤ 4ε then the algorithm stops and outputs gt. By the triangle inequality,

‖~χf − ~χgt‖ ≤ ‖~χf − ~α‖+ ‖~α− χ̃gt‖+ ‖χ̃gt − ~χgt‖
≤ ε(1 + 4 + 1/2) < 6ε,

so gt satisfies the claimed condition.
Otherwise (if ρ > 4ε), let g′t+1 = g′t + ht/2 and gt+1 = P1(g′t+1) where ht is defined by

ht ,
n∑
i=0

(αi − g̃t(i))xi.

Note that this is equivalent to adding the vector (~α − χ̃gt)/2 to the degree 0 and 1 Fourier coefficients of
g′t (which are also the components of the vector representing gt). This concludes the description of the
ChowReconstruct algorithm.

To prove the convergence of this process we define a potential function at step t as

Ψ(t) = E[(f − gt)2] + 2E[(f − gt)(gt − g′t)]
= E[(f − gt)(f − 2g′t + gt)].

The key claim in the proof of Theorem 10 is the following:

Claim 31. We have Ψ(t+ 1)−Ψ(t) ≤ −2ε2.

Proof. To prove Claim 31 we first prove that

E[(f − gt)ht] ≥ ρ
(
ρ− 3

2
ε

)
. (2)

To see this, observe that by the Cauchy-Schwarz inequality, we have

E[(f − gt)ht] =
n∑
i=0

(f̂(i)− ĝt(i))(αi − g̃t(i))

=
n∑
i=0

[
(f̂(i)− αi)(αi − g̃t(i)) +

(g̃t(i)− ĝt(i))(αi − g̃t(i)) + (αi − g̃t(i))2
]

≥ −ρε− ρε/2 + ρ2 ≥ ρ2 − 3

2
ρε.

In addition, by Parseval’s identity,

E[h2
t ] =

n∑
i=0

(αi − g̃t(i))2 = ρ2 . (3)

Now,

Ψ(t+ 1)−Ψ(t) = E[(f − gt+1)(f − 2g′t+1 + gt+1)]−E[(f − gt)(f − 2g′t + gt)]

= E
[
(f − gt)(2g′t − 2g′t+1) + (gt+1 − gt)(2g′t+1 − gt − gt+1)

]
= −E[(f − gt)ht] + E

[
(gt+1 − gt)(2g′t+1 − gt − gt+1)

]
. (4)
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To upper-bound the expression E
[
(gt+1 − gt)(2g′t+1 − gt − gt+1)

]
we prove that for every point x ∈

{−1, 1}n,
(gt+1(x)− gt(x))(2g′t+1(x)− gt(x)− gt+1(x)) ≤ ht(x)2/2. (5)

We first observe that

|gt+1(x)− gt(x)| = |P1(g′t(x) + ht(x)/2)− P1(g′t(x))| ≤ |ht(x)/2|,

where the equality is by definition of gt+1 and gt and the inequality holds because a truncation operation
does not increase the distance. Now the triangle inequality gives

|2g′t+1(x)− gt(x)− gt+1(x)| ≤ |g′t+1(x)− gt(x)|+ |g′t+1(x)− gt+1(x)|.

We shall argue that either each of the two summands above on the right-hand size is at most |ht(x)/2|, or
else the left-hand side of (5) is zero.

For the first summand, we have that |g′t+1(x)− gt(x)| = |ht(x)/2 + g′t(x)− gt(x)|. This can be larger
than |ht(x)/2| in only two ways: the first of these is that g′t(x)− gt(x) 6= 0 and g′t(x)− gt(x) has the same
sign as ht(x). By the definition of P1, this implies that gt(x) = sign(g′t(x)) and sign(ht(x)) = sign(g′t(x)−
gt(x)) = gt(x). However, in this case |g′t+1(x)| ≥ |g′t(x)| > 1 and sign(g′t+1(x)) = sign(g′t(x)) = gt(x).
As a result gt+1(x) = gt(x) and (gt+1(x)− gt(x))(2g′t+1(x)− gt(x)− gt+1(x)) = 0.

The second way in which it is possible to have |ht(x)/2+g′t(x)−gt(x)| > |ht(x)/2| is if g′t(x)−gt(x) 6=
0, g′t(x)− gt(x) has the opposite sign from ht(x)/2, and |g′t(x)− gt(x)| > 2|ht(x)/2|. In this case we have
that |g′t+1(x)| > 1 and gt+1(x) = sign(g′t+1(x)) = sign(g′t(x)) = gt(x), so (gt+1(x)− gt(x))(2g′t+1(x)−
gt(x)− gt+1(x)) = 0 as above.

Similarly, for the second summand, |g′t+1(x)−gt+1(x)| > |ht(x)/2| implies that gt+1(x) = sign(g′t+1(x))
and |g′t+1(x)| ≥ |ht(x)/2| + 1. This implies that |g′t(x)| ≥ |g′t+1(x)| − |ht(x)/2| > 1 and gt(x) =
sign(g′t(x)) = sign(g′t+1(x)) = gt+1(x), which means (gt+1(x)−gt(x))(2g′t+1(x)−gt(x)−gt+1(x)) = 0.

Altogether we obtain that

(gt+1(x)− gt(x))(2g′t+1(x)− gt(x)− gt+1(x)) ≤ max{0, |ht(x)/2|(|ht(x)/2|+ |ht(x)/2|)} = ht(x)2/2,

establishing (5) as desired. This pointwise inequality implies that

E
[
(gt+1 − gt)(2g′t+1 − gt − gt+1)

]
≤ E[h2

t ]/2 = ρ2/2, (6)

where we used (3) for the equality. By substituting equations (2) and (6) into equation (4), we obtain the
claimed decrease in the potential function,

Ψ(t+ 1)−Ψ(t) ≤ −ρ2 +
3

2
ρε+ ρ2/2 = −(ρ− 3ε)ρ/2 ≤ −2ε2,

and Claim 31 is proved.

We now observe that

Ψ(t) = E[(f − gt)2] + 2E[(f − gt)(gt − g′t)] ≥ 0 (7)

for all t. This follows from noting that for every x and f(x) ∈ {−1, 1}, if gt(x) − g′t(x) is non-zero
then, by the definition of P1, gt(x) = sign(g′t(x)) and sign(gt(x) − g′t(x)) = −gt(x). In this case, either
f(x) − gt(x) = 0 or else sign(f(x) − gt(x)) = −gt(x) and hence (f(x) − gt(x))(gt(x) − g′t(x)) ≥ 0.
Therefore

E[(f − gt)(gt − g′t)] ≥ 0
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(and, naturally, E[(f − gt)2] ≥ 0).
It is easy to see that Ψ(0) = 1 and consequently (7) and Claim 31) imply that the process will stop after

at most 1/(2ε2) steps.
We now establish the claimed weight bound on the LBF output by the algorithm and the bound on the

running time. Let T denote the number of iterations of the algorithm. By our construction, the function
gT = P1(

∑
t<T ht/2) is an LBF represented by weight vector ~w such that wi =

∑
j<T (αi − g̃j(i))/2. Our

rounding of the estimates of Chow parameters of gt ensures that each (αi − g̃j(i))/2 is an integer multiple
of κ = ε/(2

√
n+ 1). Hence gT can be represented by a vector ~w = κ~v, where vector ~v has only integer

components. At every step j, √√√√ n∑
i=0

(αi − g̃j(i))2 ≤ 2 + ε+ ε/2 = O(1).

Therefore, by the triangle inequality, ‖~w‖ = O(ε−2) and hence ‖~v‖ = ‖~w‖/κ = O(
√
n/ε3).

The running time of the algorithm is essentially determined by finding χ̃gt in each step t. Finding χ̃gt
requires estimating each ĝt(i) = E[gt(x) · xi] to accuracy ε/(4

√
n+ 1). Chernoff bounds imply that, by

using the empirical mean of gt(x) ·xi on O((n/ε2) · log (n/(εδ)) random points as our estimate of ĝt(i), we
can ensure that, with probability at least 1 − δ, the estimates are within ε/(4

√
n+ 1) of the true values for

all n+ 1 Chow parameters of gt for every t ≤ T = O(ε−2).
Evaluating gt on any point x ∈ {−1, 1}n takes O(n · log(n/ε)) time and we need to evaluate it on

O((n/ε2) · log (n/(εδ)) points in each of O(ε−2) steps. This gives us the claimed total running time bound,
and the proof of Theorem 10 is complete.

7 The Main Results

7.1 Proofs of Theorems 1 and 2. In this subsection we put the pieces together and prove our main results.
We start by giving a formal statement of Theorem 1:

Theorem 32 (Main). There is a function κ(ε)
def
= 2−O(log3(1/ε)) such that the following holds: Let f :

{−1, 1}n → {−1, 1} be an LTF and let 0 < ε, δ < 1/2. Write ~χf for the Chow vector of f and assume that
~α ∈ Rn+1 is a vector satisfying ‖~α−~χf‖ ≤ κ(ε). Then, there is an algorithmA with the following property:
Given as input ~α, ε and δ, algorithm A runs in Õ(n2 · poly(1/κ(ε))) · log(1/δ) time steps and outputs the
(weights-based) representation of an LTF f∗ which with probability at least 1− δ satisfies dist(f, f∗) ≤ ε.

Proof of Theorem 32. Suppose that we are given a vector ~α ∈ Rn+1 that satisfies ‖~α − ~χf‖ ≤ κ(ε), where
f is the unknown LTF to be learned. To construct the desired f∗, we run algorithm ChowReconstruct
(from Theorem 10) on input ~α with its “ε” parameter set to κ(ε). The algorithm runs in time Õ(n2 ·
poly(1/κ(ε)))·log(1/δ) and outputs an LBF g such that with probability at least 1−δ we have dChow(f, g) ≤
6κ(ε). Applying Theorem 7 we get that with probability at least 1−δ we have dist(f, g) ≤ ε/2. (We can set
the constants appropriately in the definition of the function κ(ε) above, so that the conclusion of applying
Theorem 7 is “dist(f, g) ≤ ε/2”.) Writing the LBF g as g(x) = P1(v0 +

∑n
i=1 vixi), we now claim that

f∗(x) = sign(v0 +
∑n

i=1 vixi) has dist(f, f∗) ≤ ε. This is simply because for each input x ∈ {−1, 1}n,
the contribution that x makes to to dist(f, f∗) is at most twice the contribution x makes to dist(f, g). This
completes the proof of Theorem 32.

As a simple corollary, we obtain Theorem 2.
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Proof of Theorem 2. Let f : {−1, 1}n → {−1, 1} be an arbitrary LTF. We apply Theorem 32 above, for δ =
1/3, and consider the LTF f∗ produced by the above proof. Note that the weights vi defining f∗ are identical
to the weights of the LBF g output by the algorithm ChowReconstruct. It follows from Theorem 10
that these weights are integers that satisfy

∑n
i=1 v

2
i = O(n · κ(ε)−6), and the proof is complete.

As pointed out in Section 1.2 our algorithm runs in poly(n/ε) time for LTFs whose integer weight is at most
poly(n). Formally, we have:

Theorem 33. Let f = sign(
∑n

i=1wixi − θ) be an LTF with integer weights wi such that W
def
=
∑n

i=1 |wi|.
Fix 0 < ε, δ < 1/2. Write ~χf for the Chow vector of f and assume that ~α ∈ Rn+1 is a vector satisfying
‖~α − ~χf‖ ≤ ε/(12W ). Then, there is an algorithm A′ with the following property: Given as input ~α, W ′,
ε and δ, where W ′ ≥ W and W ′ = poly(W ), algorithm A′ performs poly(nW/ε) · log(1/δ) time steps
and outputs the (weights-based) representation of an LTF f∗ which with probability at least 1 − δ satisfies
dist(f, f∗) ≤ ε.

Before we proceed with the proof, we remark that the above theorem implies an algorithm for the exact
problem with running time 2O(n logn). This follows by applying the theorem for ε = 2−n−1 recalling that
any LTF has an exact integer-weight representation with W = 2O(n logn).

Proof. As stated before, both the algorithm and proof of the above theorem are essentially identical to the
ones in Theorem 32. The details follow.

Given a vector ~α ∈ Rn+1 satisfying ‖~α − ~χf‖ ≤ ε/(12W ), where f is the unknown LTF, we run
algorithm ChowReconstruct on input ~α with its “ε” parameter set to ε/(12W ′). The algorithm runs in
time poly(nW ′/ε) · log(1/δ), which is poly(nW/ε) · log(1/δ) by our assumption on W , and outputs an
LBF g such that with probability at least 1 − δ, dChow(f, g) ≤ 6ε/(12W ′) ≤ ε/(2W ). At this point, we
need to apply the following simple structural result of [BDJ+98]:

Fact 34. Let f = sign(
∑n

i=1wixi − θ) be an LTF with integer weights wi, where W
def
=
∑n

i=1 |wi|, and let
g : {−1, 1}n → [−1, 1] be an arbitrary bounded function. Fix 0 < ε < 1/2. If dChow(f, g) ≤ ε/W , then
dist(f, g) ≤ ε.

The above fact implies that, with probability at least 1 − δ, the LBF g output by the algorithm satisfies
dist(f, g) ≤ ε/2. If g(x) = P1(v0 +

∑n
i=1 vixi), then as in the proof of Theorem 32 we have that the LTF

f∗(x) = sign(v0 +
∑n

i=1 vixi) has dist(f, f∗) ≤ ε. This completes the proof.

7.2 Near-optimality of Theorem 7. Theorem 7 says that if f is an LTF and g : {−1, 1}n → [−1, 1] sat-
isfy dChow(f, g) ≤ ε then dist(f, g) ≤ 2−Ω( 3

√
log(1/ε)). It is natural to wonder whether the conclusion can be

strengthened to “dist(f, g) ≤ εc” where c > 0 is some absolute constant. Here we observe that no conclu-
sion of the form “dist(f, g) ≤ 2−γ(1/ε)” is possible for any function γ(1/ε) = ω(log(1/ε)/ log log(1/ε)).

To see this, fix γ to be any function such that

γ(1/ε) = ω(log(1/ε)/ log log(1/ε)).

If there were a stronger version of Theorem 7 in which the conclusion is “then dist(f, g) ≤ 2−γ(1/ε),”
the arguments of Section 7.1 would give that for any LTF f , there is an LTF f ′ = sign(v · x − ν) such
that Pr[f(x) 6= f ′(x)] ≤ ε, where each vi ∈ Z satisfies |vi| ≤ poly(n) · (1/ε)o(log log(1/ε)). Taking
ε = 1/2n+1, this tells us that f ′ must agree with f on every point in {−1, 1}n, and each integer weight in
the representation sign(v · x − ν) is at most 2o(n logn). But choosing f to be Håstad’s LTF from [Hås94],
this is a contradiction, since any integer representation of that LTF must have every |vi| ≥ 2Ω(n logn).
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8 Applications to learning theory

In this section we show that our approach yields a range of interesting algorithmic applications in learning
theory.

8.1 Learning threshold functions in the 1-RFA model. Ben-David and Dichterman [BDD98] intro-
duced the “Restricted Focus of Attention” (RFA) learning framework to model the phenomenon (common in
the real world) of a learner having incomplete access to examples. We focus here on the uniform-distribution
“1-RFA” model. In this setting each time the learner is to receive a labeled example, it first specifies an index
i ∈ [n]; then an n-bit string x is drawn from the uniform distribution over {−1, 1}n and the learner is given
(xi, f(x)). So for each labeled example, the learner is only shown the i-th bit of the example along with the
label.

Birkendorf et al. [BDJ+98] asked whether LTFs can be learned in the uniform distribution 1-RFA model,
and showed that a sample of O(n ·W 2 · log(nδ )/ε2) many examples is information-theoretically sufficient
for learning an unknown threshold function with integer weights wi that satisfy

∑
i |wi| ≤ W. The results

of Goldberg [Gol06] and Servedio [Ser07] show that samples of size (n/ε)O(log(n/ε) log(1/ε)) and poly(n) ·
2Õ(1/ε2) respectively are information-theoretically sufficient for learning an arbitrary LTF to accuracy ε, but
none of these earlier results gave a computationally efficient algorithm. [OS11] gave the first algorithm for
this problem; as a consequence of their result for the Chow Parameters Problem, they gave an algorithm
which learns LTFs to accuracy ε and confidence 1 − δ in the uniform distribution 1-RFA model, running

in time 22Õ(1/ε2) · n2 · log n · log(nδ ). As a direct consequence of Theorem 1, we obtain a much more time
efficient learning algorithm for this learning task.

Theorem 35. There is an algorithm which performs Õ(n2) · (1/ε)O(log2(1/ε)) · log(1
δ ) bit-operations and

properly learns LTFs to accuracy ε and confidence 1− δ in the uniform distribution 1-RFA model.

8.2 Agnostic-type learning. In this section we show that a variant of our main algorithm gives a very fast
“agnostic-type” algorithm for learning LTFs under the uniform distribution.

Let us briefly review the uniform distribution agnostic learning model [KSS94] in our context. Let f :

{−1, 1}n → {−1, 1} be an arbitrary boolean function. We write opt = dist(f,H)
def
= minh∈HPrx[h(x) 6=

f(x)], where H denotes the class of LTFs. A uniform distribution agnostic learning algorithm is given uni-
form random examples labeled according to an arbitrary f and outputs a hypothesis h satisfying dist(h, f) ≤
opt + ε.

The only efficient algorithm for learning LTFs in this model [KKMS05] is non-proper and runs in
time npoly(1/ε). This motivates the design of more efficient algorithms with potentially relaxed guarantees.
[OS11] give an “agnostic-type” algorithm, that guarantees dist(h, f) ≤ optΩ(1)+ε and runs in time poly(n)·
2poly(1/ε). In contrast, we give an algorithm that is significantly more efficient, but has a relaxed error
guarantee.

Theorem 36. There is an algorithm B with the following performance guarantee: Let f be any Boolean
function and let opt = dist(f,H). Given 0 < ε, δ < 1/2 and access to independent uniform examples
(x, f(x)), algorithm B outputs the (weights-based) representation of an LTF f∗ which with probability 1−δ
satisfies dist(f∗, f) ≤ 2−Ω( 3

√
log(1/opt)) + ε. The algorithm performs Õ(n2) · (1/ε)O(log2(1/ε)) · log(1/δ)

time steps.

Proof. We describe the algorithm B in tandem with a proof of correctness. We start by estimating each
Chow parameter of f (using the random labeled examples) to accuracy O(κ(ε)/

√
n); we thus compute

a vector ~α ∈ Rn+1 that satisfies ‖~α − ~χf‖ ≤ κ(ε). We then run algorithm ChowReconstruct (from
Theorem 10) on input ~α, with its “ε” parameter set to κ(ε). The algorithm runs in time poly(1/κ(ε))·Õ(n2)·
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log(1/δ) and outputs an LBF g such that with probability at least 1 − δ we have dChow(f, g) ≤ 6κ(ε). By
assumption, there exists an LTF h∗ such that dist(h∗, f) ≤ opt. By Fact 6 we get dChow(h∗, f) ≤

√
2opt.

An application of the triangle inequality now gives dChow(g, h∗) ≤
√

2opt+ 6κ(ε). By Theorem 7, we thus
obtain dist(g, h∗) ≤ 2−Ω( 3

√
log(1/opt)) + ε/2. Writing the LBF g as g(x) = P1(v0 +

∑n
i=1 vixi), as above

we have that f∗(x) = sign(v0 +
∑n

i=1 vixi) has dist(f, f∗) ≤ 2−Ω( 3
√

log(1/opt)) + ε. It is easy to see that
the running time is dominated by the execution of ChowReconstruct, and the proof of Theorem 36 is
complete.

9 Conclusions and Open Problems

The problem of reconstructing a linear threshold function (exactly or approximately) from (exact or ap-
proximate values of) its degree-0 and degree-1 Fourier coefficients arises in various contexts and has been
considered by researchers in electrical engineering, game theory, social choice and learning. In this pa-
per, we gave an algorithm that reconstructs an ε-approximate LTF (in Hamming distance) and runs in time
Õ(n2) · (1/ε)O(log2(1/ε)), improving the only previous provably efficient algorithm [OS11] by nearly two
exponentials (as a function of ε). Our algorithm yields the existence of nearly-optimal integer weight ap-
proximations for LTFs and gives significantly faster algorithms for several problems in learning theory.

We now list some interesting open problems:

• What is the complexity of the exact Chow parameters problem? The problem is easily seen to lie in
NPPP, and we are not aware of a better upper bound. We believe that the problem is intractable; in
fact, we conjecture it is PP-hard.

• Is there an FPTAS for the problem, i.e., an algorithm running in poly(n/ε) time? (Note that this would
be best possible, assuming that the exact problem is intractable.) We believe so; in fact, we showed
this is the case for poly(n) integer weight LTFs. (Note however that the arguments of Section 7.2
imply that our algorithm does not run in poly(n/ε) time for general LTFs, and indeed imply that no
algorithm that outputs a poly(n/ε)-weight LTF can succeed for this problem.)

• What is the optimal bound in Theorem 7? Any improvement would yield an improved running time
for our algorithm.

• Our algorithmic approach is quite general. As was shown in [Fel12], this approach can also be used
to learn small-weight low-degree PTFs. In addition, essentially the same algorithm was more recently
used [DDS12] to solve a problem in social choice theory. Are there any other applications of our
boosting-based approach?

• Does our structural result generalize to degree-d PTFs? A natural generalization of Chow’s theorem
holds in this setting; more precisely, Bruck [Bru90] has shown that the Fourier coefficients of degree at
most d uniquely specify any degree-d PTF within the space of all Boolean or even bounded functions.
Is there a “robust version” of Bruck’s theorem? We consider this to be a challenging open problem.
(Note that our algorithmic machinery generalizes straightforwardly to this setting, hence a robust such
result would immediately yield an efficient algorithm in this generalized setting.)
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A Near-Optimality of Lemma 20

The following lemma shows that in any statement like Lemma 20 in which the hyperplaneH′ passes through
all the points in S, the distance bound on β can be no larger than n−1/2 as a function of n. This implies that
the result obtained by taking κ = 1/2n+1 in Lemma 20, which gives a distance bound of n−(1/2+o(1)) as a
function of n, is optimal up to the o(1) in the exponent.

Lemma 37. Fix ε > 8n−1/2. There is a hyperplane H ∈ Rn and a set S ⊆ {−1, 1}n such that |S| ≥ ε
82n

and the following properties both hold:

• For every x ∈ S we have d(x,H) ≤ 2εn−1/2; and

• There is no hyperplaneH′ which passes through all the points in S.

Proof. Without loss of generality, let us assume K = 4/ε2 is an even integer; note that by assumption
K < n/2. Now let us define the hyperplaneH by

H =

{
x ∈ Rn : (x1 + . . .+ xK) +

2(xK+1 + . . .+ xn)

(n−K)
= 0

}
Let us define S = {x ∈ {−1, 1}n : d(x,H) ≤ 4/

√
K(n−K)}. It is easy to verify that every x ∈ S

indeed satisfies d(x,H) ≤ 2εn−1/2 as claimed. Next, let us define A as follows:

A =
{
x ∈ {−1, 1}n : x1 + . . .+ xK = 0 and |xK+1 + . . .+ xn| ≤ 2

√
n−K

}
.

It is easy to observe that A ⊆ S. Also, we have

Prx1,...,xK [x1 + . . .+ xK = 0] ≥ (2
√
K)−1

and
PrxK+1,...,xn

[
|xK+1 + . . .+ xn| ≤ 2

√
n−K

]
≥ 1/2.

Hence we have that |S| ≥ ε2n/8. We also observe that the point z ∈ {−1, 1}n defined as

z := (1, 1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
K−2

,−1, . . . ,−1) (8)

(whose first two coordinates are 1, next K − 2 coordinates alternate between 1 and −1, and final n − K
coordinates are −1) lies onH and hence z ∈ S.

We next claim that the dimension of the affine span of the points in A ∪ z is n. This obviously implies
that there is no hyperplane which passes through all points in A ∪ z, and hence no hyperplane which passes
through all points in S. Thus to prove the lemma it remains only to prove the following claim:

Claim 38. The dimension of the affine span of the elements of A ∪ z is n.

28



To prove the claim, we observe that if we let Y denote the affine span of elements inA∪z and Y ′ denote
the linear space underlying Y , then it suffices to show that the dimension of Y ′ is n. Each element of Y ′ is
obtained as the difference of two elements in Y .

First, let y ∈ {−1, 1}n be such that ∑
i≤K

yi =
∑

K+1≤i≤n
yi = 0.

Let y⊕i ∈ {−1, 1}n be obtained from y by flipping the i-th bit. For each i ∈ {K + 1, . . . , n} we have that
y and y⊕i are both in A, so subtracting the two elements, we get that the basis vector ei belongs to Y ′ for
each i ∈ {K + 1, . . . , n}.

Next, let i 6= j ≤ K be positions such that yi = 1 and yj = −1. Let yij denote the vector which is the
same as y except that the signs are flipped at coordinates i and j. Since yij belongs to A, by subtracting y
from yij we get that for every vector eij (i 6= j ≤ K) which has 1 in coordinate i, −1 in coordinate j, and
0 elsewhere, the vector eij belongs to Y ′.

The previous two paragraphs are easily seen to imply that the linear space Y ′ contains all vectors x ∈ Rn
that satisfy the condition x1 + · · ·+xK = 0. Thus to show that the dimension of Y ′ is n, it suffices to exhibit
any vector in Y ′ that does not satisfy this condition. But it is easy to see that the vector y − z (where z is
defined in (8)) is such a vector. This concludes the proof of the claim and of Lemma 37.

B Useful extensions of Goldberg’s theorems

To allow an application of Lemma 20 in affine subspaces of Rn we require an extension of Theorem 19
(Theorem 3 of [Gol06]) which roughly speaking is as follows: the hypothesis is that not only does the set
S ⊂ {−1, 1}n lie close to hyperplane H but so also does a (small) set R of points in {0, 1}n; and the
conclusion is that not only does “almost all” of S (the subset S∗) lie on H′ but so also does all of R. To
obtain this extension we need a corresponding extension of an earlier result of Goldberg (Theorem 2 of
[Gol06]), which he uses to prove his Theorem 3; similar to our extension of Theorem 19 our extension of
Theorem 2 of [Gol06] deals with points from both {−1, 1}n and {0, 1}n. The simplest approach we have
found to obtain our desired extension of Theorem 2 of [Gol06] uses the “Zeroth Inverse Theorem” of Tao
and Vu [TV09]. We begin with a useful definition from their paper:

Definition 39. Given a vector w = (w1, . . . , wk) of real values, the cube S(w) is the subset of R defined as
3

S(w) =

{
k∑
i=1

εiwi : (ε1, . . . , εn) ∈ {−1, 0, 1}n
}
.

The “Zeroth Inverse Theorem” of [TV09] is as follows:

Theorem 40. Supposew ∈ Rn, d ∈ N and θ ∈ R satisfy Prx∈{−1,1}n [w·x = θ] > 2−d−1. Then there exists
a d-element subsetA = {i1, . . . , id} ⊂ [n] such that for v = (wi1 , . . . , wid) we have {w1, . . . , wn} ⊆ S(v).

For convenience of the reader, we include the proof here.

Proof of Theorem 40. Towards a contradiction, assume that there is no v = (wi1 , . . . , wid) such that {w1,
. . . , wn} ⊆ S(v). Then an obvious greedy argument shows that there are distinct integers i1, . . . , id+1 ∈ [n]

3In [TV09] the cube is defined only allowing εi ∈ {−1, 1} but this is a typographical error; their proof uses the εi ∈ {−1, 0, 1}
version that we state.
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such that wi1 , . . . , wid+1
is dissociated, i.e., there does not exist j ∈ [n] and εi ∈ {−1, 0, 1} such that

wj =
∑

i 6=j εiwi.
Let v = (wi1 , . . . , wid+1

). By an averaging argument, it is easy to see that if Prx∈{−1,1}n [w · x = θ] >

2−d−1, then ∃ν ∈ R such that Prx∈{−1,1}d+1 [v · x = ν] > 2−d−1. By the pigeon hole principle, this means
that there exist x, y ∈ {−1, 1}d+1 such that x 6= y and v · ((x− y)/2) = 0. Since entries of (x− y)/2 are
in {−1, 0, 1}, and not all the entries in (x− y)/2 are zero, this means that v is not dissociated resulting in a
contradiction.

Armed with this result, we now prove the extension of Goldberg’s Theorem 2 that we will need later:

Theorem 41. Let w ∈ Rn have ‖w‖2 = 1 and let θ ∈ R be such that Prx∈{−1,1}n [w · x = θ] = α. Let H
denote the hyperplane H = {x ∈ Rn | w · x = θ}. Suppose that span(H ∩ ({−1, 1}n ∪ {0, 1}n)) = H,
i.e., the affine span of the points in {−1, 1}n ∪ {0, 1}n that lie on H is H. Then all entries of w are integer
multiples of f(n, α)−1, where

f(n, α) ≤ (2n)blog(1/α)c+3/2 · (blog(1/α)c)!

Proof. We first observe that w · (x− y) = 0 for any two points x, y that both lie onH. Consider the system
of homogeneous linear equations in variables w′1, . . . , w

′
n defined by

w′ · (x− y) = 0 for all x, y ∈ H ∩ ({−1, 1}n ∪ {0, 1}n). (9)

Since span(H∩ ({−1, 1}n ∪ {0, 1}n)) is by assumption the entire hyperplaneH, the system (9) must have
rank n− 1; in other words, every solution w′ that satisfies (9) must be some rescaling w′ = cw of the vector
w definingH.

Let A denote a subset of n− 1 of the equations comprising (9) which has rank n− 1 (so any solution to
A must be a vector w′ = cw as described above). We note that each coefficient in each equation of A lies
in {−2,−1, 0, 1, 2}. Let us define d = blog(1/α)c + 1. By Theorem 40, there is some wi1 , . . . , wid′ with

d′ ≤ d such that for v def
= (wi1 , . . . , wid′ ), we have {w1, . . . , wn} ⊆ S(v); in other words, for all j ∈ [n] we

have wj =
∑d′

`=1 ε`,jwi` where each ε`,j belongs to {−1, 0, 1}. Substituting these relations into the system
A, we get a new system of homogenous linear equations, of rank d′−1, in the variablesw′i1 , . . . , w

′
id′

, where
all coefficients of all variables in all equations of the system are integers of magnitude at most 2n.

Let M denote a subset of d′ − 1 equations from this new system which has rank d′ − 1. In other words,
viewing M as a d′ × (d′ − 1) matrix, we have the equation M · vT = 0 where all entries in the matrix
M are integers in [−2n, 2n]. Note that at least one of the values wi1 , . . . , wid′ is non-zero (for if all of
them were 0, then since {w1, . . . , wn} ⊆ S(v) it would have to be the case that w1 = · · · = wn = 0.).
Without loss of generality we may suppose that wi1 has the largest magnitude among wi1 , . . . , wid′ . We
now fix the scaling constant c, where w′ = cw, to be such that w′i1 = 1. Rearranging the system M(cv)T =

M(1, w′i2 , . . . , w
′
id′

)T = 0, we get a new system of d′ − 1 linear equations M ′(w′i2 , . . . , w
′
id′

)T = b where
M ′ is a (d′ − 1) × (d′ − 1) matrix whose entries are integers in [−2n, 2n] and b is a vector whose entries
are integers in [−2n, 2n].

We now use Cramer’s rule to solve the system

M ′(w′i2 , . . . , w
′
id′

)T = b.

This gives us that w′ij = det(M ′j)/ det(M ′) where M ′j is the matrix obtained by replacing the jth column
ofM ′ by b. So each w′ij is an integer multiple of 1/ det(M ′) and is bounded by 1 (by our earlier assumption
aboutwi1 having the largest magnitude). Since {w′1, . . . , w′n} ⊆ S(v), we get that each valuew′i is an integer
multiple of 1/det(M ′), and each |w′i| ≤ n. Finally, sinceM ′ is a (d′−1)×(d′−1) matrix where every entry
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is an integer of magnitude at most 2n, we have that | det(M ′)| ≤ (2n)d
′−1 · (d′ − 1)! ≤ (2n)d−1 · (d− 1)!.

Moreover, the `2 norm of the vector w′ is bounded by n3/2. So renormalizing (dividing by c) to obtain the
unit vector w back from w′ = cw, we see that every entry of w is an integer multiple of 1/N , where N is a
quantity at most (2n)d+1/2 · d!. Recalling that d = blog(1/α)c+ 1, the theorem is proved.

We next prove the extension of Theorem 3 from [Gol06] that we require. The proof is almost identical
to the proof in [Gol06] except for the use of Theorem 41 instead of Theorem 2 from [Gol06] and a few other
syntactic changes. For the sake of clarity and completeness, we give the complete proof here.

Theorem 42. Given any hyperplane H in Rn whose β-neighborhood contains a subset S of vertices of
{−1, 1}n where S = α · 2n, there exists a hyperplane which passes through all the points of ({−1, 1}n ∪
{0, 1}n) that are contained in the β-neighborhood ofH provided that

0 ≤ β ≤
(

(2/α) · n5+blog(n/α)c · (2 + blog(n/α)c)!
)−1

.

Before giving the proof, we note that the hypothesis of our theorem is the same as the hypothesis of
Theorem 3 of [Gol06]. The only difference in the conclusion is that while Goldberg proves that all points
of {−1, 1}n in the β-neighborhood of H lie on the new hyperplane, we prove this for all the points of
({−1, 1}n ∪ {0, 1}n) in the β-neighborhood ofH.

Proof. Let H = {x | w · x − t = 0} with ‖w‖ = 1. Also, let S = {x ∈ {−1, 1}n | d(x,H) ≤ β} and
S′ = {x ∈ ({−1, 1}n ∪ {0, 1}n) | d(x,H) ≤ β}. For any x ∈ S′ we have that w · x ∈ [t − β, t + β].
Following [Gol06] we create a new weight vector w′ ∈ Rn by rounding each coordinate wi of w to the
nearest integer multiple of β (rounding up in case of a tie). Since every x ∈ S′ has entries from {−1, 0, 1},
we can deduce that for any x ∈ S′, we have

t− β − nβ/2 < w · x− nβ/2 < w′ · x < w · x+ nβ/2 ≤ t+ β + nβ/2.

Thus for every x ∈ S′, the value w′ · x lies in a semi-open interval of length β(n + 2); moreover, since it
only takes values which are integer multiples of β, there are at most n+2 possible values that w′ ·x can take
for x ∈ S′. Since S ⊂ S′ and |S| ≥ α2n, there must be at least one value t′ ∈ (t−nβ/2−β, t+nβ/2 +β]
such that at least α2n/(n+ 2) points in S lie on the hyperplane H1 defined as H1 = {x : w′ · x = t′}. We
also let A1 = span{x ∈ S′ : w′ · x = t′}. It is clear that A1 ⊂ H1. Also, since at least α2n/(n+ 2) points
of {−1, 1}n lie on A1, by Fact 15 we get that dim(A1) ≥ n− log(n+ 2)− log(1/α).

It is easy to see that ‖w′ − w‖ ≤
√
nβ/2, which implies that ‖w′‖ ≥ 1 −

√
nβ/2. Note that for

any x ∈ S′ we have |w′ · x − t′| ≤ (n + 2)β. We now recall the following elementary fact which shows
how to express the Euclidean distance of a point from a hyperplane using the standard representation of the
hyperplane:

Fact 43. Let H = {x : w · x − θ = 0} be a hyperplane in Rn where ‖w‖ = 1. Then for any x ∈ Rn, the
Euclidean distance d(x,H) of x fromH is |w · x− θ|.

Using Fact 43, we get that for any x ∈ S′ we have d(x,H1) ≤ (β(n + 2))/(1 −
√
nβ/2). Since√

nβ � 1, we get that d(x,H1) ≤ 2nβ for every x ∈ S′.
At this point our plan for the rest of the proof of Theorem 42 is as follows: First we will construct a

hyperplaneHk (by an inductive construction) such that span(Hk ∩ ({−1, 1}n∪{0, 1}n)) = Hk, A1 ⊆ Hk,
and all points in S′ are very close toHk (say within Euclidean distance γ). Then we will apply Theorem 41
to conclude that any point {−1, 1}n ∪ {0, 1}n which is not on Hk must have Euclidean distance at least
some γ′ from Hk. If γ′ > γ then we can infer that every point in S′ lies on Hk, which proves the theorem.
We now describe the construction that givesHk.
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If dim(A1) = n − 1, then we let k = 1 and stop the process, since as desired we have span(Hk ∩
({−1, 1}n ∪ {0, 1}n)) = Hk, A1 = Hk, and d(x,Hk) ≤ 2nβ for every x ∈ S′. Otherwise, by an inductive
hypothesis, we may assume that for some j ≥ 1 we have an affine space Aj and a hyperplaneHj such that

• A1 ⊆ Aj ( Hj ;

• dim(Aj) = dim(A1) + j − 1, and

• for all x ∈ S′ we have d(x,Hj) ≤ 2jnβ.

Using this inductive hypothesis, we will construct an affine space Aj+1 and a hyperplane Hj+1 such
that A1 ⊂ Aj+1 ⊆ Hj+1, dim(Aj+1) = dim(A1) + j, and for all x ∈ S′ we have

d(x,Hj+1) ≤ 2j+1nβ.

If Aj+1 = Hj+1, we stop the process, else we continue.
We now describe the inductive construction. Since Aj ( Hj , there must exist an affine subspace A′j

such that Aj ⊆ A′j ( Hj and dim(A′j) = n − 2. Let xj denote arg maxx∈S′ d(x,A′j). (We assume that
maxx∈S′ d(x,A′j) > 0; if not, then choose xj to be an arbitrary point in {−1, 1}n not lying on A′j . In this
case, the properties of the inductive construction will trivially hold.) Define Hj+1 = span(A′j ∪ xj). It is
clear thatHj+1 is a hyperplane. We claim that for x ∈ S′ we have

d(x,Hj+1) ≤ d(x,Hj) + d(xj ,Hj) ≤ 2jnβ + 2jnβ = 2j+1nβ.

To see this, observe that without loss of generality we may assume thatHj passes through the origin and thus
A′j is a linear subspace. Thus we have that ‖x⊥A′j‖ ≤ ‖(xj)⊥A′j‖ for all x ∈ S′, where for a point z ∈ Rn

we write z⊥A′j to denote the component of x orthogonal to A′j . Let r = ‖x⊥A′j‖ and r1 = ‖xj,⊥A′j‖, where
r1 ≥ r. Let θ denote the angle that x⊥A′j makes with Hj and let φ denote the angle that x⊥A′j makes with
(xj)⊥A′j . Then it is easy to see that d(x,Hj+1) = |r · sin(θ − φ)|, d(x,Hj) = |r · sin(θ)| and d(xj ,Hj) =

|r1 · sin(φ)|. Thus, we only need to check that if r1 ≥ r, then |r · sin(θ − φ)| ≤ |r · sin(θ)|+ |r1 · sin(φ)|
which is straightforward to check.

Let Aj+1 = span(Aj ∪ xj) and note that A1 ⊂ Aj+1 ⊆ Hj+1 and dim(Aj+1) = dim(Aj) + 1. As
shown above, for all x ∈ S′ we have d(x,Hj+1) ≤ 2j+1nβ. This completes the inductive construction.

Since dim(A1) ≥ n− log(n+ 2)− log(1/α), the process must terminate for some k ≤ log(n+ 2) +
log(1/α). When the process terminates, we have a hyperplaneHk satisfying the following properties:

• span(Hk ∩ ({−1, 1}n ∪ {0, 1}n)) = Hk; and

• |Hk ∩ S| ≥ α2n/(n+ 2); and

• for all x ∈ S′ we have d(x,Hk) ≤ 2knβ ≤ (1/α)n(n+ 2)β.

We can now apply Theorem 41 to the hyperplaneHk to get that ifHk = {x | v · x− ν = 0} with ‖v‖ = 1,
then all the entries of v are integral multiples of a quantity E−1 where

E ≤ (2n)blog((n+2)/α)c+3/2 · (blog((n+ 2)/α)c)!.

Consequently v · x is an integral multiple of E−1 for every x ∈ ({−1, 1}n ∪ {0, 1}n). Since there are
points of {−1, 1}n on Hk, it must be the case that ν is also an integral multiple of E. So if any x ∈
({−1, 1}n ∪ {0, 1}n) is such that d(x,Hk) < E, then d(x,Hk) = 0 and hence x actually lies on Hk. Now
recall that for any x ∈ S′ we have d(x,Hk) ≤ (n/α)(n + 2)β. Our upper bound on β from the theorem
statement ensures that (n/α)(n+ 2)β < E−1, and consequently every x ∈ S′ must lie on Hk, proving the
theorem.
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C Proof of Claim 30

We will need the following technical tool for the proof:

Lemma 44. Let S ⊆ {−1, 1}n and W : S → [0, 2] such that W(S) = δ′2n. Also, let v ∈ Rn have
‖v‖ = 1. Then ∑

x∈S
W(x) · |v · x| = δ′(

√
2 ln(1/δ′) + 4) · 2n.

Proof. For any x ∈ S, let D(x)
def
= W(x)/W(S). Clearly, D defines a probability distribution over S. By

definition, Ex∼D[|v · x|] = (
∑

x∈SW(x) · |v · x|)/W(S). Since W(S) = δ′ · 2n, to prove the lemma it
suffices to show that Ex∼D[|v ·x|] =

√
2 ln(1/δ′) + 4. Recall that for any non-negative random variable Y ,

we have the identity E[Y ] =
∫
t≥0 Pr[Y > t] dt. Thus, we have

Ex∼D[|v · x|] =

∫
t≥0

Prx∼D[|v · x| > t] dt.

To bound this quantity, we exploit the fact that the integrand is concentrated. Indeed, by the Hoeffding
bound we have that

Prx∼{−1,1}n [|v · x| > t] ≤ 2e−t
2/2.

This implies that the set A = {x ∈ {−1, 1}n : |v ·x| > t} is of size at most 2e−t
2/22n. SinceW(x) ≤ 2 for

all x ∈ S, we have that
∑

x∈A∩SW(x) ≤ 4e−t
2/22n. This implies that Prx∼D[|v ·x| > t] ≤ (4/δ′) ·e−t2/2.

The following chain of inequalities completes the proof:

Ex∼D [|v · x|] =

∫ √2 ln(1/δ′)

t=0
Prx∼D[|w · x| > t] dt+

∫
t≥
√

2 ln(1/δ′)
Prx∼D[|v · x| > t] dt

≤
√

2 ln(1/δ′) +

∫
t≥
√

2 ln(1/δ′)
Prx∼D[|v · x| > t] dt

≤
√

2 ln(1/δ′) +

∫
t≥
√

2 ln(1/δ′)

4e−t
2/2

δ′
dt

≤
√

2 ln(1/δ′) +

∫
t≥
√

2 ln(1/δ′)

4te−t
2/2

δ′
dt =

√
2 ln(1/δ′) + 4.

Recall the statement of Claim 30:

Claim 30. For j ≤ log(8/ε), suppose that W(Sj) ≥ γj · 2n where γj = β4 log(1/ε)−2(j+1) · ε. Then
dChow(f, g) ≥ δ, where δ = β4 log(1/ε).

Proof. We start by observing that(
ε− 4

j−1∑̀
=0

γ`−δ

)
2n−1 ≤ W(V j

+),W(V j
−) ≤ (ε+ δ)2n−1.

The upper bound is obvious because V j
+ ⊆ V 0

+ and V j
− ⊆ V 0

− and the range ofW is non-negative. To see
the lower bound, note thatW(V 0 \ V j) ≤ 2(

∑j−1
`=0 γ`)2

n. As V 0
+ \ V

j
+ and V 0

− \ V
j
− are both contained in
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V 0 \ V j , we get the stated lower bound. We also note that

2

(
j−1∑
`=0

γ`

)
2n = 2

(
j−1∑
`=0

β4 log(1/ε)−2`−2

)
2n

≤ 4β4 log(1/ε)−2j2n.

This implies that the sets V j
+ and V j

− are (ε, 4β4 log(1/ε)−2j + δ) balanced. In particular, using that δ ≤
4β4 log(1/ε)−2j , we can say that the sets V j

+ and V j
− are (ε, 8β4 log(1/ε)−2j)-balanced. We also observe that

for j ≤ log(8/ε), we have that 8β4 log(1/ε)−2j ≤ ε/8. Let us define µj+ =
∑

x∈V j+
W(x) · x, µj− =∑

x∈V j−
W(x) · x, ∆j

+ = V 0
+ \ V

j
+ and ∆j

− = V 0
− \ V

j
−. An application of Proposition 28 yields that

|(µj+ − µ
j
−) · ̂̀j | ≥ (βγj − 8β4 log(1/ε)−2j

√
2 ln(16/ε))2n.

We now note that

(µ+ − µ−) · ̂̀j = (µj+ − µ
j
−) · ̂̀j +

 ∑
x∈∆j

+

W(x)−
∑
x∈∆j

−

W(x)

 · ̂̀j .
Defining µ̃j+ =

∑
x∈∆j

+
W(x) · x and µ̃j− =

∑
x∈∆j

−
W(x) · x, the triangle inequality implies that∣∣∣(µ+ − µ−) · ̂̀j∣∣∣ ≥ ∣∣∣(µj+ − µj−) · ̂̀j∣∣∣− ∣∣∣µ̃j+ · ̂̀j∣∣∣− ∣∣∣µ̃j− · ̂̀j∣∣∣ .

Using Lemma 44 and thatW(∆j
+),W(∆j

−) ≤ W(V 0 \ V j) ≤ 8β4 log(1/ε)−2j · 2n, we get that∣∣∣µ̃j+ · ̂̀j∣∣∣ =
∑

x∈∆j
+

W(x) · x · ̂̀j
= O

(
|∆j

+| ·
√

log(2n/|∆j
+|)
)

= O
(
β4 log(1/ε)−2j · log3/2(1/ε) · 2n

)
and similarly ∣∣∣µ̃j− · ̂̀j∣∣∣ = O

(
β4 log(1/ε)−2j · log3/2(1/ε) · 2n

)
.

This implies that ∣∣∣(µ+ − µ−) · ̂̀j∣∣∣ ≥ (βγj − 8β4 log(1/ε)−2j
√

2 ln(8/ε))2n

−O
(
β4 log(1/ε)−2j · log3/2(1/ε) · 2n

)
.

Plugging in the value of γj , we see that for ε smaller than a sufficiently small constant, we have that∣∣∣(µ+ − µ−) · ̂̀j∣∣∣ ≥ βγj2n−1.

An application of Proposition 26 finally gives us that

dChow(f, g) ≥ 2−n‖µ+ − µ−‖ ≥ 2−n(µ+ − µ−) · ̂̀j = βγj/2 ≥ δ

which establishes Claim 30.
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