866 research outputs found

    Fermion spectrum and localization on kinks in a deconstructed dimension

    Full text link
    We study the deconstructed scalar theory having nonlinear interactions and being renormalizable. It is shown that the kink-like configurations exist in such models. The possible forms of Yukawa coupling are considered. We find the degeneracy in mass spectrum of fermions coupled to the nontrivial scalar configuration.Comment: 19pages, 39figures, revised versio

    Functional centrality in graphs

    Full text link
    In this paper we introduce the functional centrality as a generalization of the subgraph centrality. We propose a general method for characterizing nodes in the graph according to the number of closed walks starting and ending at the node. Closed walks are appropriately weighted according to the topological features that we need to measure

    The problem of deficiency indices for discrete Schr\"odinger operators on locally finite graphs

    Get PDF
    The number of self-adjoint extensions of a symmetric operator acting on a complex Hilbert space is characterized by its deficiency indices. Given a locally finite unoriented simple tree, we prove that the deficiency indices of any discrete Schr\"odinger operator are either null or infinite. We also prove that almost surely, there is a tree such that all discrete Schr\"odinger operators are essentially self-adjoint. Furthermore, we provide several criteria of essential self-adjointness. We also adress some importance to the case of the adjacency matrix and conjecture that, given a locally finite unoriented simple graph, its the deficiency indices are either null or infinite. Besides that, we consider some generalizations of trees and weighted graphs.Comment: Typos corrected. References and ToC added. Paper slightly reorganized. Section 3.2, about the diagonalization has been much improved. The older section about the stability of the deficiency indices in now in appendix. To appear in Journal of Mathematical Physic

    Spectral Analysis of Protein-Protein Interactions in Drosophila melanogaster

    Full text link
    Within a case study on the protein-protein interaction network (PIN) of Drosophila melanogaster we investigate the relation between the network's spectral properties and its structural features such as the prevalence of specific subgraphs or duplicate nodes as a result of its evolutionary history. The discrete part of the spectral density shows fingerprints of the PIN's topological features including a preference for loop structures. Duplicate nodes are another prominent feature of PINs and we discuss their representation in the PIN's spectrum as well as their biological implications.Comment: 9 pages RevTeX including 8 figure

    Enhancing the spectral gap of networks by node removal

    Full text link
    Dynamics on networks are often characterized by the second smallest eigenvalue of the Laplacian matrix of the network, which is called the spectral gap. Examples include the threshold coupling strength for synchronization and the relaxation time of a random walk. A large spectral gap is usually associated with high network performance, such as facilitated synchronization and rapid convergence. In this study, we seek to enhance the spectral gap of undirected and unweighted networks by removing nodes because, practically, the removal of nodes often costs less than the addition of nodes, addition of links, and rewiring of links. In particular, we develop a perturbative method to achieve this goal. The proposed method realizes better performance than other heuristic methods on various model and real networks. The spectral gap increases as we remove up to half the nodes in most of these networks.Comment: 5 figure

    Universality in Complex Networks: Random Matrix Analysis

    Get PDF
    We apply random matrix theory to complex networks. We show that nearest neighbor spacing distribution of the eigenvalues of the adjacency matrices of various model networks, namely scale-free, small-world and random networks follow universal Gaussian orthogonal ensemble statistics of random matrix theory. Secondly we show an analogy between the onset of small-world behavior, quantified by the structural properties of networks, and the transition from Poisson to Gaussian orthogonal ensemble statistics, quantified by Brody parameter characterizing a spectral property. We also present our analysis for a protein-protein interaction network in budding yeast.Comment: 4+ pages, 4 figures, to appear in PRE, major change in the paper including titl
    corecore