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Following random matrix theory, we study nearest neighbor spacing distribution (NNSD) of the
eigenvalues of the adjacency matrix of various model networks, namely scale-free, small-world and
random networks. Our analysis shows that, though spectral densities of these model networks are
different, their eigenvalue fluctuations are same and follow Gaussian orthogonal ensemble (GOE)
statistics. Secondly we show the analogy between the onset of small-world behavior (quantified by
small diameter and large clustering coefficients) and the transition from Poisson to GOE statistics
(quantified by Brody parameter). We also present our analysis for a protein-protein interaction
network in budding yeast.
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Regular and random networks are the two limiting
cases of network topology. For regular networks, each
node is connected in a fixed pattern to the same num-
ber of neighboring nodes; on the other hand, for random
networks, each node is randomly joined with any other
node. Real-world networks show the properties which are
intermediate of the regular and the random one [1–3]. To
model randomness and regularity, Watts and Strogatz
proposed an algorithm to generate popularly known as
‘small-world network’, which has the properties of small
diameter and high clustering [1]. In addition to above
mentioned properties, Barabási and Albert show that
many real-world networks are scale-free, which means
that the degree distribution p(k), fraction of nodes that
have k number of connections with other nodes, decays
as p(k) ∝ k−γ , where γ depends on the topology of the
networks. The scale-free nature of networks suggests that
some nodes are much more connected than the rest [4].

The structure of networks is described by its associ-
ated adjacency matrix A. It is defined in following way:
Aij = 1 if i and j nodes are connected and zero otherwise.
We consider only undirected networks. In this case, the
adjacency matrix is symmetric and consequently has real
eigenvalues. These eigenvalues give information about
some basic topological properties of the underlying net-
work. There exists extensive literature demonstrating
that the properties of graphs (or networks) and the asso-
ciated adjacency matrices are well characterized by spec-
tral methods, that provide global measure of the network
properties [5–7]. Spectral density of random matrices,
whose elements are Gaussian distributed random num-
bers, follows Wigner’s semicircular law [8]. Interestingly,
the spectral density of the adjacency matrix of random
graphs, whose elements are randomly 0 or 1, also follows
the semicircular law [9].

With the increasing availability of large maps of real-
world networks, in the past few years lot of work has
been done on the spectral densities of adjacency matrix
of these real-world networks and models network having
real-world properties [9–11]. These analysis show that

the spectral densities of real-world networks are not semi-
circular, instead they have some specific features depend-
ing on the minute details of the corresponding model. For
example, small-world model networks show very complex
spectral density with many sharp peaks, while the spec-
tral density of scale-free model networks exhibits triangu-
lar distribution [9, 11]. Real-world networks may have all
or one of the above mentioned properties, that is small
diameter, high clustering coefficients and degree distri-
bution showing power law [2, 12]. Whatever properties
real-world networks, studied in the recent literature [3],
have, one thing commonly existing in all of them, that
is certain amount of randomness or disorder among net-
work connections.

In this paper we propose to quantify this randomness
following tools of random matrix theory (RMT). So far
we are aware of only one relevant paper where the authors
have studied the eigenvalue fluctuations in the microar-
ray data for discovering functional gene modules [13]. In
the present paper, we show our RMT analysis for differ-
ent model networks studied vastly in the recent network
literature and also for a real-world network. We find
that in spite of having differences (in terms of various lo-
cal and global properties, which are being used to char-
acterize networks) in all these networks, there exists a
common underlying universal features shown in the fluc-
tuation of the eigenvalues of the adjacency matrix. From
now onwards, the eigenvalues of the adjacency matrix of
a network will be referred to as the eigenvalues of the
network.

RMT was proposed by Wigner to explain the statistical
properties of nuclear spectra [8]. Later this theory was
successfully applied in the study of different complex sys-
tems including disordered systems, quantum chaotic sys-
tems, spectra of large complex atoms, etc [14]. The eigen-
value fluctuation is generally obtained from the nearest
neighbor spacing distribution (NNSD) of the eigenvalues.
The NNSD follows two universal properties depending
upon the underlying correlations among the eigenvalues.
For correlated eigenvalues, the NNSD follows Wigner-
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Dyson formula of Gaussian orthogonal ensemble (GOE)
statistics of RMT; whereas, the NNSD follows Poisson
statistics of RMT for uncorrelated eigenvalues.

In the present study, we find that the NNSD of random
networks follow GOE. The spectral density of random
network and of the Gaussian distributed random matrix
are both semicircular, so it was expected that their spac-
ing distribution would be identical. However, though
the spectral density of the scale-free network is trian-
gular, very interestingly its NNSD follows GOE statis-
tics. In addition to these model networks, we also an-
alyze a protein-protein interaction network in budding
yeast. Our analysis shows that this real-world network
has scale free degree distribution and its spacing distri-
bution follows GOE.

Secondly, we study the change of NNSD with the
transition from regular to small-world network. Watts-
Strogatz model of small-world network is constructed by
rewiring the edges of regular ring lattice with probabil-
ity p. This rewiring procedure generates a network with
some random connections, without altering the number
of vertices or edges. For p = 0, structure of the regular
lattice or k-nearest neighbor coupled network remains
same; on the other hand, for p = 1, the regular lattice
becomes random network. For the intermediate values
of p, the graph is a small-world network. We start with
a regular lattice (p = 0) for which NNSD follows Pois-
son statistics. For p = 1, NNSD follows GOE. We find
that for the intermediate value of p the NNSD shows in-
termediate statistics of Poisson and GOE. Moreover we
show that NNSD changes from Poisson to GOE with a
very small increment in p, and most importantly, the
transition to GOE takes place exactly at the onset of
small-world transition. We establish the relation between
the small-world transition and the GOE transition in the
NNSD of the networks by comparing the diameter and
the clustering coefficients of the networks with a parame-
ter (β), coming from the semiempirical eigenvalues spac-
ing distributions studied extensively in RMT to model
Poisson→GOE transition.

Here we briefly describe some aspects of RMT which
we have used in our network analysis. We denote the
eigenvalues of networks by λi, i = 1, . . . , N , where N is
the size of the network. In order to get universal proper-
ties of the fluctuations of the eigenvalues, it is customary
in RMT to unfold the eigenvalues by a transformation
λi = N(λi), where N is the averaged integrated eigen-
value density [8]. Since we do not have any analytical
form for N , we have numerically unfolded the spectrum
by polynomial curve fitting. After the unfolding, the av-
erage spacings will be unity which is independent of the
system. Using the unfolded spectra, we calculate the
spacings as si = λi+1 − λi. The NNSD P (s) is defined
as the probability distribution of these si’s. In case of
Poisson statistics, P (s) = exp(−s); whereas for GOE
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FIG. 1: (Color online) (a)-(b) Spectral density (ρ(λ)) of ran-
dom and scale-free network, respectively. (c)-(d) Correspond-
ing spacing distribution (P (s)). Both follow GOE statistics.
The histograms are numerical results and the solid lines rep-
resent fitted Brody distribution. All networks have N = 2000
nodes and an average degree k = 20 per node. Figures are
plotted for average over 10 random realizations of the net-
works.
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spacing distribution is described by Brody distribution
[15]:
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.

This is a semiempirical formula characterized by the pa-
rameter β. As β goes from 0 to 1, the Brody distribution
smoothly changes from Poisson to GOE. We fit the spac-
ing distributions of different networks by the Brody dis-
tribution Pβ(s). This fitting gives an estimation of β, and
consequently identifies whether the spacing distribution
of a given network is Poisson or GOE or intermediate of
these two.

In Fig. 1, we present the ensemble averaged spectral
density (ρ(λ)) and spacing distribution (P (s)) of random
and scale-free networks. Figs. 1(a) and 1(b) respectively
show the well known semicircular and triangular distri-
bution of the spectral density of random and scale-free
networks. Though the spectral densities of these two
networks are different, Figs. 1(c) and 1(d) show that the
spacing distribution of both the networks follow GOE
very closely (β ≃ 1). Following RMT, these results im-
ply that even though the spectral density of the scale-
free network is different from the random network, but
the correlations among the eigenvalues of the scale-free
network is as strong as that of the correlations among
the eigenvalues of the random network.
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FIG. 2: (Color online) Figure shows different properties of
a protein-protein interaction network in budding yeast. (a)
Degree distribution : the scale-free nature of the network is
clearly observed. (b) Spectral density : large value of ρ(0)
(Inset : besides large ρ(0), overall spectral density follows
well-known triangular distribution. (c) Spacing distribution :
it follows GOE, estimated value of β is ∼ 1. The histogram
represents numerical result and the solid line is fitted Brody
distribution.

To show that our analysis exhibiting universality of
GOE statistics for the model random networks are
generic, we studied some real-world networks also and
here we present our results for a protein-protein interac-
tion network in budding yeast [16]. Results are presented
in Fig. 2, top panel showing that the degree distribution
p(k) of the network follows power-law, i.e., p(k) ∝ k−γ ,
with γ ≃ 2.1536, which satisfies the scale-free condition
2 ≤ γ ≤ 3. The middle panel of this figure shows that
the spectral density of this network is overall triangular
(see also the inset of this panel for magnified figure) but
with very large ρ(0). Large value of ρ(0) is one of the
characteristics of many real-world networks [11]. Due to
the large value of ρ(0), it is very difficult to numerically
unfold the spectra. Therefore, in this case, we divide the
spectra into two parts : one part contains only negative
eigenvalues with values less than −0.1 and the other part
contains positive eigenvalues with values greater than 0.1.
We assume these two sets of eigenvalues as the ensem-
ble of two realizations, and calculate ensemble averaged
spacing distribution. The bottom panel of Fig. 2 is show-
ing that the spacing distribution of the protein-protein
interaction network of budding yeast also follows GOE.

Now we discuss our results for Watts-Strogatz model of
small-world network. In Figs. 3(a) and 3(e), we present
respectively the spectral density and spacing distribu-
tion of the regular ring lattice with each node having 20
edges. These subfigures show that the spectral density
of the lattice is complicated without having any known
analytical form; but its spacing distribution clearly fol-
lows Poisson statistics (β ∼ 0). Then we randomize a

fraction p = 5 × 10−5 of the edges of the regular lattice.
For this value of p, the spectral density and the spacing
distribution are plotted respectively in Fig. 3(b) and Fig.
3(f). These figures reveal that, for this very small value
of p, the spectral density does not show any noticeable
change as compared to the spectral density of the regular
lattice, whereas the spacing distribution shows different
property (β ∼ 0.0838). As we further increase the pa-
rameter p from 5 × 10−5 to p = 2 × 10−4 and thereafter
to p = 5 × 10−4, the spectral density shows hardly any
changes in its features (Figs. 3(c)-3(d)), but very inter-
estingly, according to Figs. 3(g) and 3(h), for these two
values of p the spacing distributions show significantly
different properties as compared to the Poissonian spac-
ing distribution of the regular lattice. Now the spacing
distributions are looking like intermediate of Poisson and
GOE. By fitting the spacing distribution corresponding
to these two p values with the Brody formula, we esti-
mate the Brody parameter β respectively as 0.628 and
0.785. These values indicate that we are already at the
onset of Poisson→GOE transition. From this trend, we
expect that the Brody parameter β will increase with
the increment of p and will reach asymptotically to unity
with p → 1. Note that we take regular lattice with av-
erage degree k ≃ 20, for this value of k we have NNSD
showing Poisson statistics, for other values of k where we
do not have Poisson statistics there also we get transition
to GOE statistics. We choose this value of k just to make
RMT analogy clear.
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FIG. 3: (Color online) Figure shows the transition from ring
regular lattice to the small-world network. (a)-(d) show the
spectral densities and (e)-(h) show the corresponding spacing
distributions for p = 0, 5 × 10−5, 2 × 10−4, 5 × 10−4, respec-
tively. The histograms are numerical data and the solid lines
are the corresponding fitted Brody distribution. See text for
the corresponding values of Brody parameters. All the net-
works have N = 2000 nodes and k = 40 average degree per
node, and data are average over 10 random realization of the
rewiring process
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FIG. 4: (Color online) The shifted Brody parameter 1−β (△)
is compared with the two well-known network parameters,
normalized characteristic length L(p)/L(0) (©) and normal-
ized clustering coefficients C(p)/C(0) (�). The data points
corresponding to the curve for β is joined by a solid line for
better visibility. Network parameters are same as for Fig. 3.
The data are average over 10 random realization of rewiring
process for each value of p.

We present in Fig. 4 the variation of Brody parameter
β as a function of p over the whole range 0 ≤ p ≤ 1.
Moreover, in this figure, we show the correspondence be-
tween β and two important network parameters - the
characteristic path length L(p) and the clustering coeffi-
cient C(p) - as a function of p. L measures the number
of connections in the shortest path between two nodes,
averaged over all pairs of nodes. Clustering coefficient
C measures the cliquishness of a typical neighborhood,
averaged over all the nodes. In this figure we have nor-
malized L and C by the values L(0) and C(0) for a reg-
ular lattice. Due to this normalization, at p = 0, the
normalized L and C both are one ; whereas when p → 1,
both network parameters will be closer to zero. However,
β behaves completely opposite way at the two extreme
values of p. Therefore, in Fig. 4, we have compared
1 − β with normalized L and C. This figure shows that
the Brody parameter β and the normalized characteristic
length L(p)/L(0) display similar trends and strong cor-
respondence. The most important result of this study is
that the Poisson→GOE transition and the small-world
transition take place at the same rewiring probability p.
Note that here all the results are presented for the adja-
cency matrix, however we have done the similar analysis
for Laplacian matrix also and for Fig. 3 and Fig. 4 qual-
itatively same results are obtained.

In summary, we study eigenvalues spacing distribution
of various model networks and a real-world network. We
study the effect of the randomness in the network archi-
tecture on the eigenvalue fluctuation of the network, and
use Brody parameter to quantify this randomness. We
show that though the spectral densities of the random,
the scale-free and the small-world networks are different,

their eigenvalues spacing distributions are same and fol-
low GOE statistics. The interesting finding is that GOE

transition is observed at the onset of the small-world
transition. We find that after this transition all networks
behave similar as of the completely random graph. We
also study a protein-protein interaction network in bud-
ding yeast and find that the spacing distribution for this
network also follows GOE statistics. Following the inter-
pretation of RMT, these results imply that at the onset of
small-world transition, eigenvalues of the network show
strong correlations among themselves which could be un-
derstood as some kind of correlation among the nodes of
the network. Or we feel that it is some kind of spreading
over the randomness in the whole network.

According to many recent studies, randomness in the
network connections is one of the most important and
desirable ingredients for the proper functionality or the
efficient performance of the system. For instance, infor-
mation processing in the brain [17], is considered to be
because of many random long range connections among
different modular structures. Based on our study we feel
that we are at the proper ground to quantify the role of
randomness. We could also pose the questions like, can
we compare the randomness in the different networks, or
how much minimal randomness in connections is required
for the information sharing and spreading in the whole
system. According to our results, even very small ran-
domness (corresponding to β ∼ 1) is enough to introduce
correlations among the nodes, and after this, network
behaves as the completely random graph. Our results
are based on the model networks studied extensively in
the past few years, more general remarks and complete
understanding of randomness in the real-world networks
would require analysis of the networks having specific
features [12, 18].

So far many local and global measures are available in
literature to characterize complex networks. Following
RMT we introduce a new measure, and we feel that in
this framework real-world networks can be characterized
[19] and compared by the amount of randomness they
have.

[1] D. J. Watts and S. H. Strogatz, Nature 440, 393 (1998).
[2] S. H. Strogatz, Nature 410, 268 (2001).
[3] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47

(2002) ; S. Boccalettia et al., Phys. Rep. 424, 175 (2006).
[4] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[5] F. R. K. Chung, Spectral Graph Theory, Number 92,

AMS (1997).
[6] H. Minc and M. Marcus, A Survey of Matrix Theory and

Matrix Inequalities (Prindle, Weber & Schmidt, 1964).
[7] M. Doob in Handbook of Graph Theory, edited by J. L.

Gross and J. Yellen (Chapman & Hall/CRC, 2004).
[8] M. L. Mehta, Random Matrices, 2nd ed. (Academic

Press, New York, 1991).



5

[9] I. J. Farkas et al., Phys. Rev. E 64, 026704, (2001).
[10] S. N. Dorogovtsev et al., Phys. Rev. E 68, 046109 (2003).
[11] M. A. M. de Aguiar and Y. Bar-Yam, Phys. Rev. E 71,

016106 (2005).
[12] E. Ravsaz et al., Science 297, 1551 (2002).
[13] F. Luo et al., Phys. Rev. E 73, 031924 (2006).
[14] T. Guhr et al., Phys. Rep. 299, 189 (1998).
[15] T. A. Brody, Lett. Nuovo Cimento 7, 482 (1973).

[16] http://vlado.fmf.uni-lj.si/pub/networks/data/bio
/Yeast/Yeast.htm.

[17] J. D. Cohen and F. Tong, Science, 293, 2405 (2001).
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