1,522 research outputs found
Altered Cerebellar Short-Term Plasticity but No Change in Postsynaptic AMPA-Type Glutamate Receptors in a Mouse Model of Juvenile Batten Disease
Juvenile Batten disease is the most common progressive neurodegenerative disorder of childhood. It is associated with mutations in the CLN3 gene, causing loss of function of CLN3 protein and degeneration of cerebellar and retinal neurons. It has been proposed that changes in granule cell AMPA-type glutamate receptors (AMPARs) contribute to the cerebellar dysfunction. In this study we compared AMPAR properties and synaptic transmission in cerebellar granule cells from wild-type and Cln3 knockout mice. In Cln3Δex1–6 cells the amplitude of AMPA-evoked whole-cell currents was unchanged. Similarly, we found no change in the amplitude, kinetics, or rectification of synaptic currents evoked by individual quanta, or in their underlying single-channel conductance. We found no change in cerebellar expression of GluA2 or GluA4 protein. By contrast, we observed a reduced number of quantal events following mossy-fiber stimulation in Sr2+, altered short-term plasticity in conditions of reduced extracellular Ca2+, and reduced mossy fiber vesicle number. Thus, while our results suggest early presynaptic changes in the Cln3Δex1–6 mouse model of juvenile Batten disease, they reveal no evidence for altered postsynaptic AMPARs
Factors associated with the decision to investigate child protective services referrals: a systematic review
Background: Limited resources for child protection create challenging decision situations for child protective services (CPS) workers at the point of intake. A body of research has examined the factors associated with worker decisions and processes using a variety of methodological approaches to gain knowledge on decision-making. However, few attempts have been made to systematically review this literature.
Objective: As part of a larger project on decision-making at intake, this systematic review addressed the question of the factors associated with worker decisions to investigate alleged maltreatment referrals.
Methods: Quantitative studies that examined factors associated with screening decisions in CPS practice settings were included in the review. Database and other search methods were used to identify research published in English over a 35-year period (1980-2015).
Findings: Of 1,147 identified sources, 18 studies were selected for full data extraction. The studies were conducted in the U.S., Canada, and Sweden and varied in methodological quality. Most studies examined case factors with few studies examining other domains.
Conclusions: To inform CPS policy and practice, additional research is needed to examine the relationships between decision-making factors and case outcomes. Greater attention needs to be given to the organizational and external factors that influence decision-making
Acid-sensing ion channel 1a drives AMPA receptor plasticity following ischemia and acidosis in hippocampal CA1 neurons
The CA1 region of the hippocampus is particularly vulnerable to ischemic damage. While NMDA receptors play a major role in excitotoxicity, it is thought to be exacerbated in this region by two forms of post-ischemic AMPA receptor (AMPAR) plasticity - namely, anoxic long-term potentiation (a-LTP), and a delayed increase in the prevalence of Ca2+ -permeable GluA2-lacking AMPARs (CP-AMPARs). The acid-sensing ion channel 1a (ASIC1a) which is expressed in CA1 pyramidal neurons, is also known to contribute to post-ischemic neuronal death and to physiologically induced LTP. This raises the question - does ASIC1a activation drive the post-ischemic forms of AMPAR plasticity in CA1 pyramidal neurons? We have tested this by examining organotypic hippocampal slice cultures (OHSCs) exposed to oxygen glucose deprivation (OGD), and dissociated cultures of hippocampal pyramidal neurons (HPN) exposed to low pH (acidosis). We find that both a-LTP and the delayed increase in the prevalence of CP-AMPARs are dependent on ASIC1a activation during ischemia. Indeed, acidosis alone is sufficient to induce the increase in CP-AMPARs. We also find that inhibition of ASIC1a channels circumvents any potential neuroprotective benefit arising from block of CP-AMPARs. By demonstrating that ASIC1a activation contributes to post-ischemic AMPAR plasticity, our results identify a functional interaction between acidotoxicity and excitotoxicity in hippocampal CA1 cells, and provide insight into the role of ASIC1a and CP-AMPARs as potential drug targets for neuroprotection. We thus propose that ASIC1a activation can drive certain forms of CP-AMPAR plasticity, and that inhibiting ASIC1a affords neuroprotection
Molecular mechanisms contributing to TARP regulation of channel conductance and polyamine block of calcium-permeable AMPA receptors.
Many properties of fast synaptic transmission in the brain are influenced by transmembrane AMPAR regulatory proteins (TARPs) that modulate the pharmacology and gating of AMPA-type glutamate receptors (AMPARs). Although much is known about TARP influence on AMPAR pharmacology and kinetics through their modulation of the extracellular ligand-binding domain (LBD), less is known about their regulation of the ion channel region. TARP-induced modifications in AMPAR channel behavior include increased single-channel conductance and weakened block of calcium-permeable AMPARs (CP-AMPARs) by endogenous intracellular polyamines. To investigate how TARPs modify ion flux and channel block, we examined the action of γ-2 (stargazin) on GluA1 and GluA4 CP-AMPARs. First, we compared the permeation of organic cations of different sizes. We found that γ-2 increased the permeability of several cations but not the estimated AMPAR pore size, suggesting that TARP-induced relief of polyamine block does not reflect altered pore diameter. Second, to determine whether residues in the TARP intracellular C-tail regulate polyamine block and channel conductance, we examined various γ-2 C-tail mutants. We identified the membrane proximal region of the C terminus as crucial for full TARP-attenuation of polyamine block, whereas complete deletion of the C-tail markedly enhanced the TARP-induced increase in channel conductance; thus, the TARP C-tail influences ion permeation. Third, we identified a site in the pore-lining region of the AMPAR, close to its Q/R site, that is crucial in determining the TARP-induced changes in single-channel conductance. This conserved residue represents a site of TARP action, independent of the AMPAR LBD
The effect of moderate intensity exercise in the postprandial period on the inflammatory response to a high-fat meal: an experimental study
Citation: Teeman, C. S., Kurti, S. P., Cull, B. J., Emerson, S. R., Haub, M. D., & Rosenkranz, S. K. (2016). The effect of moderate intensity exercise in the postprandial period on the inflammatory response to a high-fat meal: an experimental study. Nutrition Journal, 15, 13. doi:10.1186/s12937-016-0134-4Background: Consuming a high-fat meal (HFM) may lead to postprandial lipemia (PPL) and inflammation. Postprandial exercise has been shown to effectively attenuate PPL. However, little is known about the impact of postprandial exercise on systemic inflammation and whether PPL and inflammation are associated. The purpose of this study was to determine whether moderate intensity exercise performed 60 min following a true-to-life HFM would attenuate PPL and inflammation. Methods: Thirty-nine young adults (18-40 year) with no known metabolic disease were randomized to either a control group (CON) who remained sedentary during the postprandial period or an exercise (EX) group who walked at 60 % VO2peak to expend approximate to 5 kcal/kgbw one-hour following the HFM. Participants consumed a HFM of 10 kcal/kgbw and blood draws were performed immediately before, 2 h and 4 h post-HFM. Results: At baseline, there were no differences between EX and CON groups for any metabolic or inflammatory markers (p > 0.05). Postprandial triglycerides (TRG) increased from baseline to 4 h in the EX and CON groups (p 0.05). There was an increase in soluble vascular adhesion molecule (sVCAM-1) from baseline to 4 h (p = 0.027) for all participants along with a group x time interaction (p = 0.020). Changes in TRG were associated with changes in interleukin-10 (IL-10) from 0 to 2 h (p = 0.007), but were not associated with changes in any other inflammatory marker in the postprandial period (p > 0.05). Conclusions: Despite significant increases in PPL following a HFM, moderate intensity exercise in the postprandial period did not mitigate the PPL nor the inflammatory response to the HFM. These results indicate that in populations with low metabolic risk, PPL and inflammation following a HFM may not be directly related
Postprandial lipemic and inflammatory responses to high-fat meals: a review of the roles of acute and chronic exercise
Citation: Teeman, C. S., Kurti, S. P., Cull, B. J., Emerson, S. R., Haub, M. D., & Rosenkranz, S. K. (2016). Postprandial lipemic and inflammatory responses to high-fat meals: a review of the roles of acute and chronic exercise. Nutrition & Metabolism, 13, 14. doi:10.1186/s12986-016-0142-6Postprandial lipemia is an independent risk factor for development of cardiovascular disease. Postprandial inflammation following the prolonged elevation of triglycerides occurring subsequent to ingestion of high-fat meals, provides a likely explanation for increased disease risk. Substantial evidence has shown that acute exercise is an effective modality for attenuation of postprandial lipemia following a high-fat meal. However, much of the evidence pertaining to exercise intensity, duration, and overall energy expenditure for reducing postprandial lipemia is inconsistent. The effects of these different exercise variables on postprandial inflammation is largely unknown. Long-term, frequent exercise, however, appears to effectively reduce systemic inflammation, especially in at-risk or diseased individuals. With regard to an acute postprandial response, without a recent bout of exercise, high levels of chronic exercise do not appear to reduce postprandial lipemia. This review summarizes the current literature on postprandial and inflammatory responses to high-fat meals, and the roles that both acute and chronic exercise play. This review may be valuable for health professionals who wish to provide evidence-based, pragmatic advice for reducing postprandial lipemia and cardiovascular disease risk for their patients. A brief review of proposed mechanisms explaining how high-fat meals may result in pro-inflammatory and pro-atherosclerotic environments is also included
A randomised controlled trial of breast cancer genetics services in South East Scotland:Psychological impact
This study compared the psychological impact of two models of breast cancer genetics services in South East Scotland. One hundred and seventy general practices were randomised to refer patients to the existing standard regional service or the novel community based service. Participants completed postal questionnaires at baseline (n¼373), 4 weeks (n¼276) and 6 months (n¼263) to assess perceived risk of breast cancer, subjective and objective understanding of genetics and screening issues, general psychological\ud
distress, cancer worry and health behaviours. For participants in both arms of the trial, there were improvements in subjective and objective understanding up to 4 weeks which were generally sustained up to 6 months. However, improvements in subjective understanding for the women at low risk of breast cancer (i.e. not at significantly increased risk) in the standard service arm did not reach statistical significance. Cancer worry was significantly reduced at 6 months for participants in both arms of the trial. The two models of cancer genetics services tested were generally comparable in terms of the participants’ psychological outcomes. Therefore,\ud
decisions regarding the implementation of the novel community-based service should be based on the resources required and client satisfaction with the service
Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.
Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour
TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs
Regulation of calcium-permeable AMPA receptors (CP-AMPARs) is crucial in normal synaptic function and neurological disease states. Although transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (γ-2) modulate the properties of calcium-impermeable AMPARs (CI-AMPARs) and promote their synaptic targeting, the TARP-specific rules governing CP-AMPAR synaptic trafficking remain unclear. We used RNA interference to manipulate AMPAR-subunit and TARP expression in γ-2–lacking stargazer cerebellar granule cells—the classic model of TARP deficiency. We found that TARP γ-7 selectively enhanced the synaptic expression of CP-AMPARs and suppressed CI-AMPARs, identifying a pivotal role of γ-7 in regulating the prevalence of CP-AMPARs. In the absence of associated TARPs, both CP-AMPARs and CI-AMPARs were able to localize to synapses and mediate transmission, although their properties were altered. Our results also establish that TARPed synaptic receptors in granule cells require both γ-2 and γ-7 and reveal an unexpected basis for the loss of AMPAR-mediated transmission in stargazer mice
- …
