736 research outputs found
The Parameterized Complexity of Centrality Improvement in Networks
The centrality of a vertex v in a network intuitively captures how important
v is for communication in the network. The task of improving the centrality of
a vertex has many applications, as a higher centrality often implies a larger
impact on the network or less transportation or administration cost. In this
work we study the parameterized complexity of the NP-complete problems
Closeness Improvement and Betweenness Improvement in which we ask to improve a
given vertex' closeness or betweenness centrality by a given amount through
adding a given number of edges to the network. Herein, the closeness of a
vertex v sums the multiplicative inverses of distances of other vertices to v
and the betweenness sums for each pair of vertices the fraction of shortest
paths going through v. Unfortunately, for the natural parameter "number of
edges to add" we obtain hardness results, even in rather restricted cases. On
the positive side, we also give an island of tractability for the parameter
measuring the vertex deletion distance to cluster graphs
A self-organized model for cell-differentiation based on variations of molecular decay rates
Systemic properties of living cells are the result of molecular dynamics
governed by so-called genetic regulatory networks (GRN). These networks capture
all possible features of cells and are responsible for the immense levels of
adaptation characteristic to living systems. At any point in time only small
subsets of these networks are active. Any active subset of the GRN leads to the
expression of particular sets of molecules (expression modes). The subsets of
active networks change over time, leading to the observed complex dynamics of
expression patterns. Understanding of this dynamics becomes increasingly
important in systems biology and medicine. While the importance of
transcription rates and catalytic interactions has been widely recognized in
modeling genetic regulatory systems, the understanding of the role of
degradation of biochemical agents (mRNA, protein) in regulatory dynamics
remains limited. Recent experimental data suggests that there exists a
functional relation between mRNA and protein decay rates and expression modes.
In this paper we propose a model for the dynamics of successions of sequences
of active subnetworks of the GRN. The model is able to reproduce key
characteristics of molecular dynamics, including homeostasis, multi-stability,
periodic dynamics, alternating activity, differentiability, and self-organized
critical dynamics. Moreover the model allows to naturally understand the
mechanism behind the relation between decay rates and expression modes. The
model explains recent experimental observations that decay-rates (or turnovers)
vary between differentiated tissue-classes at a general systemic level and
highlights the role of intracellular decay rate control mechanisms in cell
differentiation.Comment: 16 pages, 5 figure
Comparing the hierarchy of keywords in on-line news portals
The tagging of on-line content with informative keywords is a widespread
phenomenon from scientific article repositories through blogs to on-line news
portals. In most of the cases, the tags on a given item are free words chosen
by the authors independently. Therefore, relations among keywords in a
collection of news items is unknown. However, in most cases the topics and
concepts described by these keywords are forming a latent hierarchy, with the
more general topics and categories at the top, and more specialised ones at the
bottom. Here we apply a recent, cooccurrence-based tag hierarchy extraction
method to sets of keywords obtained from four different on-line news portals.
The resulting hierarchies show substantial differences not just in the topics
rendered as important (being at the top of the hierarchy) or of less interest
(categorised low in the hierarchy), but also in the underlying network
structure. This reveals discrepancies between the plausible keyword association
frameworks in the studied news portals
GraphCombEx: A Software Tool for Exploration of Combinatorial Optimisation Properties of Large Graphs
We present a prototype of a software tool for exploration of multiple
combinatorial optimisation problems in large real-world and synthetic complex
networks. Our tool, called GraphCombEx (an acronym of Graph Combinatorial
Explorer), provides a unified framework for scalable computation and
presentation of high-quality suboptimal solutions and bounds for a number of
widely studied combinatorial optimisation problems. Efficient representation
and applicability to large-scale graphs and complex networks are particularly
considered in its design. The problems currently supported include maximum
clique, graph colouring, maximum independent set, minimum vertex clique
covering, minimum dominating set, as well as the longest simple cycle problem.
Suboptimal solutions and intervals for optimal objective values are estimated
using scalable heuristics. The tool is designed with extensibility in mind,
with the view of further problems and both new fast and high-performance
heuristics to be added in the future. GraphCombEx has already been successfully
used as a support tool in a number of recent research studies using
combinatorial optimisation to analyse complex networks, indicating its promise
as a research software tool
Perturbation Centrality and Turbine: A Novel Centrality Measure Obtained Using a Versatile Network Dynamics Tool
Analysis of network dynamics became a focal point to understand and predict
changes of complex systems. Here we introduce Turbine, a generic framework
enabling fast simulation of any algorithmically definable dynamics on very
large networks. Using a perturbation transmission model inspired by
communicating vessels, we define a novel centrality measure: perturbation
centrality. Hubs and inter-modular nodes proved to be highly efficient in
perturbation propagation. High perturbation centrality nodes of the Met-tRNA
synthetase protein structure network were identified as amino acids involved in
intra-protein communication by earlier studies. Changes in perturbation
centralities of yeast interactome nodes upon various stresses well
recapitulated the functional changes of stressed yeast cells. The novelty and
usefulness of perturbation centrality was validated in several other model,
biological and social networks. The Turbine software and the perturbation
centrality measure may provide a large variety of novel options to assess
signaling, drug action, environmental and social interventions. The Turbine
algorithm is available at: http://www.turbine.linkgroup.huComment: 21 pages, 4 figues, 1 table, 58 references + a Supplement of 52
pages, 10 figures, 9 tables and 39 references; Turbine algorithm is available
at: http://www.turbine.linkgroup.h
Optimal interdependence between networks for the evolution of cooperation
Recent research has identified interactions between networks as crucial for the outcome of evolutionary
games taking place on them. While the consensus is that interdependence does promote cooperation by
means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we
here address the question just how much interdependence there should be. Intuitively, one might assume
the more the better. However, we show that in fact only an intermediate density of sufficiently strong
interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate
interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links
between the networks, and the independent formation of cooperative patterns on each individual network.
Presented results are robust to variations of the strategy updating rule, the topology of interdependent
networks, and the governing social dilemma, thus suggesting a high degree of universality
Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity
We present a novel formulation for biochemical reaction networks in the
context of signal transduction. The model consists of input-output transfer
functions, which are derived from differential equations, using stable
equilibria. We select a set of 'source' species, which receive input signals.
Signals are transmitted to all other species in the system (the 'target'
species) with a specific delay and transmission strength. The delay is computed
as the maximal reaction time until a stable equilibrium for the target species
is reached, in the context of all other reactions in the system. The
transmission strength is the concentration change of the target species. The
computed input-output transfer functions can be stored in a matrix, fitted with
parameters, and recalled to build discrete dynamical models. By separating
reaction time and concentration we can greatly simplify the model,
circumventing typical problems of complex dynamical systems. The transfer
function transformation can be applied to mass-action kinetic models of signal
transduction. The paper shows that this approach yields significant insight,
while remaining an executable dynamical model for signal transduction. In
particular we can deconstruct the complex system into local transfer functions
between individual species. As an example, we examine modularity and signal
integration using a published model of striatal neural plasticity. The modules
that emerge correspond to a known biological distinction between
calcium-dependent and cAMP-dependent pathways. We also found that overall
interconnectedness depends on the magnitude of input, with high connectivity at
low input and less connectivity at moderate to high input. This general result,
which directly follows from the properties of individual transfer functions,
contradicts notions of ubiquitous complexity by showing input-dependent signal
transmission inactivation.Comment: 13 pages, 5 tables, 15 figure
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems
A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud
\u
Identification of critical paralog groups with indispensable roles in the regulation of signaling flow
Extensive cross-talk between signaling pathways is required to integrate the myriad of extracellular signal combinations at the cellular level. Gene duplication events may lead to the emergence of novel functions, leaving groups of similar genes - termed paralogs - in the genome. To distinguish critical paralog groups (CPGs) from other paralogs in human signaling networks, we developed a signaling network-based method using cross-talk annotation and tissue-specific signaling flow analysis. 75 CPGs were found with higher degree, betweenness centrality, closeness, and ‘bowtieness’ when compared to other paralogs or other proteins in the signaling network. CPGs had higher diversity in all these measures, with more varied biological functions and more specific post-transcriptional regulation than non-critical paralog groups (non-CPG). Using TGF-beta, Notch and MAPK pathways as examples, SMAD2/3, NOTCH1/2/3 and MEK3/6-p38 CPGs were found to regulate the signaling flow of their respective pathways. Additionally, CPGs showed a higher mutation rate in both inherited diseases and cancer, and were enriched in drug targets. In conclusion, the results revealed two distinct types of paralog groups in the signaling network: CPGs and non-CPGs. Thus highlighting the importance of CPGs as compared to non-CPGs in drug discovery and disease pathogenesis
Characterization of complex networks: A survey of measurements
Each complex network (or class of networks) presents specific topological
features which characterize its connectivity and highly influence the dynamics
of processes executed on the network. The analysis, discrimination, and
synthesis of complex networks therefore rely on the use of measurements capable
of expressing the most relevant topological features. This article presents a
survey of such measurements. It includes general considerations about complex
network characterization, a brief review of the principal models, and the
presentation of the main existing measurements. Important related issues
covered in this work comprise the representation of the evolution of complex
networks in terms of trajectories in several measurement spaces, the analysis
of the correlations between some of the most traditional measurements,
perturbation analysis, as well as the use of multivariate statistics for
feature selection and network classification. Depending on the network and the
analysis task one has in mind, a specific set of features may be chosen. It is
hoped that the present survey will help the proper application and
interpretation of measurements.Comment: A working manuscript with 78 pages, 32 figures. Suggestions of
measurements for inclusion are welcomed by the author
- …
