1,750 research outputs found

    Intensity of Brillouin light scattering from spin waves in magnetic multilayers with noncollinear spin configurations: Theory and experiment

    Full text link
    The scattering of photons from spin waves (Brillouin light scattering -- BLS) is a well-established technique for the study of layered magnetic systems. The information about the magnetic state and properties of the sample is contained in the frequency position, width, and intensity of the BLS peaks. Previously [Phys. Rev. B 67, 184404 (2003)], we have shown that spin wave frequencies can be conveniently calculated within the ultrathin film approach, treating the intralayer exchange as an effective bilinear interlayer coupling between thin virtual sheets of the ferromagnetic layers. Here we give the consequent extension of this approach to the calculation of the Brillouin light scattering (BLS) peak intensities. Given the very close relation of the BLS cross-section to the magneto-optic Kerr effect (MOKE), the depth-resolved longitudinal and polar MOKE coefficients calculated numerically via the usual magneto-optic formalism can be employed in combination with the spin wave precessional amplitudes to calculate full BLS spectra for a given magnetic system. This approach allows an easy calculation of BLS intensities even for noncollinear spin configurations including the exchange modes. The formalism is applied to a Fe/Cr/Fe/Ag/Fe trilayer system with one antiferromagnetically coupling spacer (Cr). Good agreement with the experimental spectra is found for a wide variety of spin configurations.Comment: 19 pages, 5 figure

    Διερεύνηση Πλημυρικής Κατάκλυσης σε συνθήκες μη μόνιμης ροής με τη χρήση Λογισμικών Υδραυλικής Προσομοίωση. Εφαρμογή στον Πηνειό Θεσσαλίας.

    Get PDF
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Επιστήμη και Τεχνολογία Υδατικών Πόρων

    Evolving outer heliosphere: Large-scale stability and time variations observed by the Interstellar Boundary Explorer

    Get PDF
    The first all-sky maps of Energetic Neutral Atoms (ENAs) from the Interstellar Boundary Explorer (IBEX) exhibited smoothly varying, globally distributed flux and a narrow ribbon of enhanced ENA emissions. In this study we compare the second set of sky maps to the first in order to assess the possibility of temporal changes over the 6 months between views of each portion of the sky. While the large-scale structure is generally stable between the two sets of maps, there are some remarkable changes that show that the heliosphere is also evolving over this short timescale. In particular, we find that (1) the overall ENA emissions coming from the outer heliosphere appear to be slightly lower in the second set of maps compared to the first, (2) both the north and south poles have significantly lower (similar to 10-15%) ENA emissions in the second set of maps compared to the first across the energy range from 0.5 to 6 keV, and (3) the knot in the northern portion of the ribbon in the first maps is less bright and appears to have spread and/or dissipated by the time the second set was acquired. Finally, the spatial distribution of fluxes in the southernmost portion of the ribbon has evolved slightly, perhaps moving as much as 6 degrees (one map pixel) equatorward on average. The observed large-scale stability and these systematic changes at smaller spatial scales provide important new information about the outer heliosphere and its global interaction with the galaxy and help inform possible mechanisms for producing the IBEX ribbon

    Precision Pointing of IBEX-Lo Observations

    Full text link
    Post-launch boresight of the IBEX-Lo instrument onboard the Interstellar Boundary Explorer (IBEX) is determined based on IBEX-Lo Star Sensor observations. Accurate information on the boresight of the neutral gas camera is essential for precise determination of interstellar gas flow parameters. Utilizing spin-phase information from the spacecraft attitude control system (ACS), positions of stars observed by the Star Sensor during two years of IBEX measurements were analyzed and compared with positions obtained from a star catalog. No statistically significant differences were observed beyond those expected from the pre-launch uncertainty in the Star Sensor mounting. Based on the star observations and their positions in the spacecraft reference system, pointing of the IBEX satellite spin axis was determined and compared with the pointing obtained from the ACS. Again, no statistically significant deviations were observed. We conclude that no systematic correction for boresight geometry is needed in the analysis of IBEX-Lo observations to determine neutral interstellar gas flow properties. A stack-up of uncertainties in attitude knowledge shows that the instantaneous IBEX-Lo pointing is determined to within \sim 0.1\degr in both spin angle and elevation using either the Star Sensor or the ACS. Further, the Star Sensor can be used to independently determine the spacecraft spin axis. Thus, Star Sensor data can be used reliably to correct the spin phase when the Star Tracker (used by the ACS) is disabled by bright objects in its field-of-view. The Star Sensor can also determine the spin axis during most orbits and thus provides redundancy for the Star Tracker.Comment: 22 pages, 18 figure

    In flight performance and first results of FREGATE

    Full text link
    The gamma-ray detector of HETE-2, called FREGATE, has been designed to detect gamma-ray bursts in the energy range [6-400] keV. Its main task is to alert the other instruments of the occurrence of a gamma-ray burst (GRB) and to provide the spectral coverage of the GRB prompt emission in hard X-rays and soft gamma-rays. FREGATE was switched on on October 16, 2000, one week after the successful launch of HETE-2, and has been continuously working since then. We describe here the main characteristics of the instrument, its in-flight performance and we briefly discuss the first GRB observations.Comment: Invited lecture at the Woods Hole 2001 GRB Conference, 8 pages, 15 figure

    Epeak estimator for Gamma-Ray Bursts Observed by the Swift Burst Alert Telescope

    Full text link
    We report a correlation based on a spectral simulation study of the prompt emission spectra of gamma-ray bursts (GRBs) detected by the Swift Burst Alert Telescope (BAT). The correlation is between the Epeak energy, which is the peak energy in the \nu F_\nu spectrum, and the photon index (\Gamma) derived from a simple power-law model. The Epeak - \Gamma relation, assuming the typical smoothly broken power-law spectrum of GRBs, is \log Epeak = 3.258 - 0.829\Gamma (1.3 < \Gamma < 2.3). We take into account not only a range of Epeak energies and fluences, but also distributions for both the low-energy photon index and the high-energy photon index in the smoothly broken power-law model. The distribution of burst durations in the BAT GRB sample is also included in the simulation. Our correlation is consistent with the index observed by BAT and Epeak measured by the BAT, and by other GRB instruments. Since about 85% of GRBs observed by the BAT are acceptably fit with the simple power-law model because of the relatively narrow energy range of the BAT, this relationship can be used to estimate Epeak when it is located within the BAT energy range.Comment: 27 pages, 31 figures, accepted for publication in Ap

    HETE Observations of the Gamma-Ray Burst GRB030329: Evidence for an Underlying Soft X-ray Component

    Full text link
    An exceptionally intense gamma-ray burst, GRB030329, was detected and localized by the instruments on board the High Energy Transient Explorer satellite (HETE) at 11:37:14 UT on 29 March 2003. The burst consisted of two \~10s pulses of roughly equal brightness and an X-ray tail lasting >100s. The energy fluence in the 30-400 keV energy band was 1.08e-4 erg/cm2, making GRB030329 one of the brightest GRBs ever detected. Communication of a 2 arcmin error box 73 minutes after the burst allowed the rapid detection of a counterpart in the optical, X-ray, radio and the ensuing discovery of a supernova with most unusual characteristics. Analyses of the burst lightcurves reveal the presence of a distinct, bright, soft X-ray component underlying the main GRB: the 2-10 keV fluence of this component is ~7e-6 erg/cm2. The main pulses of GRB030329 were preceded by two soft, faint, non-thermal bumps. We present details of the HETE observations of GRB030329.Comment: 22 pages, 5 figures, to be published in ApJ 617, no. 2 (10 December 2004). Referee comments have been incorporated; results of improved spectral analysis are include

    Global Characteristics of X-Ray Flashes and X-Ray-Rich GRBs Observed by HETE-2

    Get PDF
    We describe and discuss the global properties of 45 gamma-ray bursts (GRBs) observed by HETE-2 during the first three years of its mission, focusing on the properties of X-Ray Flashes (XRFs) and X-ray-rich GRBs (XRRs). We find that the numbers of XRFs, XRRs, and GRBs are comparable. We find that the durations and the sky distributions of XRFs and XRRs are similar to those of GRBs. We also find that the spectral properties of XRFs and XRRs are similar to those of GRBs, except that the values of the peak energy EpeakobsE^{\rm obs}_{\rm peak} of the burst spectrum in νFν\nu F_\nu, the peak energy flux \Fp, and the energy fluence SES_E of XRFs are much smaller -- and those of XRRs are smaller -- than those of GRBs. Finally, we find that the distributions of all three kinds of bursts form a continuum in the [SES_E(2-30 keV),SES_E(30-400) keV]-plane, the [SES_E(2-400 keV), EpeakE_{\rm peak}]-plane, and the [FpeakF_{\rm peak}(50-300 keV), EpeakE_{\rm peak}]-plane. These results provide strong evidence that all three kinds of bursts arise from the same phenomenon.Comment: 33 pages, 15 figures, submitted to Ap

    Spectral analysis of 35 GRBs/XRFs observed with HETE-2/FREGATE

    Full text link
    We present a spectral analysis of 35 GRBs detected with the HETE-2 gamma-ray detectors (the FREGATE instrument) in the energy range 7-400 keV. The GRB sample analyzed is made of GRBs localized with the Wide Field X-ray Monitor onboard HETE-2 or with the GRB Interplanetary Network. We derive the spectral parameters of the time-integrated spectra, and present the distribution of the low-energy photon index, alpha, and of the peak energy, e_peak . We then discuss the existence and nature of the recently discovered X-Ray Flashes and their relationship with classical GRBs.Comment: 14 pages, 43 figures, accepted for publication in Astronomy and Astrophysic
    corecore