1,034 research outputs found
Using social media to measure the contribution of Red List species to the nature-based tourism potential of African protected areas
Cultural ecosystem services are defined by people’s perception of the environment, which make them hard to quantify systematically. Methods to describe cultural benefits from ecosystems typically include resource-demanding survey techniques, which are not suitable to assess cultural ecosystem services for large areas. In this paper we explore a method to quantify cultural benefits through the enjoyment of natured-based tourism, by assessing the potential tourism attractiveness of species for each protected area in Africa using the IUCN’s Red List of Threatened Species. We use the number of pictures of wildlife posted on a photo sharing website as a proxy for charisma, popularity, and ease of observation, as these factors combined are assumed to determine how attractive species are for the global wildlife tourist. Based on photo counts of 2473 African animals and plants, species that seem most attractive to nature-based tourism are the Lion, African Elephant and Leopard. Combining the photo counts with species range data, African protected areas with the highest potential to attract wildlife tourists based on attractive species occurrence were Samburu National Reserve in Kenya, Mukogodo Forest Reserve located just north of Mount Kenya, and Addo Elephant National Park in South-Africa. The proposed method requires only three data sources which are freely accessible and available online, which could make the proposed index tractable for large scale quantitative ecosystem service assessments. The index directly links species presence to the tourism potential of protected areas, making the connection between nature and human benefits explicit, but excludes other important contributing factors for tourism, such as accessibility and safety. This social media based index provides a broad understanding of those species that are popular globally; in many cases these are not the species of highest conservation concern.JRC.H.5-Land Resources Managemen
Discovery of X-ray absorption features from the dipping low-mass X-ray binary XB 1916-053 with XMM-Newton
We report the discovery of narrow Fe XXV and Fe XXVI K alpha X-ray absorption
lines at 6.65 and 6.95 keV in the persistent emission of the dipping low-mass
X-ray binary (LMXB) XB 1916-053 during an XMM-Newton observation performed in
September 2002. In addition, there is marginal evidence for absorption features
at 1.48 keV, 2.67 kev, 7.82 keV and 8.29 keV consistent with Mg XII, S XVI, Ni
XXVII K alpha and Fe XXVI K beta transitions, respectively. Such absorption
lines from highly ionized ions are now observed in a number of high inclination
(ie. close to edge-on) LMXBs, such as XB 1916-053, where the inclination is
estimated to be between 60-80 degrees. This, together with the lack of any
orbital phase dependence of the features (except during dips), suggests that
the highly ionized plasma responsible for the absorption lines is located in a
cylindrical geometry around the compact object. Using the ratio of Fe XXV and
Fe XXVI column densities, we estimate the photo-ionization parameter of the
absorbing material to be 10^{3.92} erg cm s^{-1}. Only the Fe XXV line is
observed during dipping intervals and the upper-limits to the Fe XXVI column
density are consistent with a decrease in the amount of ionization during
dipping intervals. This implies the presence of cooler material in the line of
sight during dipping. We also report the discovery of a 0.98 keV absorption
edge in the persistent emission spectrum. The edge energy decreases to 0.87 keV
during deep dipping intervals. The detected feature may result from edges of
moderately ionized Ne and/or Fe with the average ionization level decreasing
from persistent emission to deep dipping. This is again consistent with the
presence of cooler material in the line of sight during dipping.Comment: 13 pages, accepted for publication in Astronomy and Astrophysic
One-magnon Raman scattering in La(2)CuO(4): the origin of the field-induced mode
We investigate the one-magnon Raman scattering in the layered
antiferromagnetic La(2)CuO(4) compound. We find that the Raman signal is
composed by two one-magnon peaks: one in the B1g channel, corresponding to the
Dzyaloshinskii-Moryia (DM) mode, and another in the B3g channel, corresponding
to the XY mode. Furthermore, we show that a peak corresponding to the XY mode
can be induced in the planar (RR) geometry when a magnetic field is applied
along the easy axis for the sublattice magnetization. The appearance of such
field-induced mode (FIM) signals the existence of a new magnetic state above
the Neel temperature T_N, where the direction of the weak-ferromagnetic moment
(WFM) lies within the CuO(2) planes.Comment: 4 pages, 3 figure
Raman scattering from phonons and magnons in RFe3)BO3)4
Inelastic light scattering spectra of several members of the RFe3(BO3)4
family reveal a cascade of phase transitions as a function of temperature,
starting with a structural, weakly first order, phase transition followed by
two magnetic phase transitions. Those consist of the ordering of the Fe-spin
sublattice revealed by all the compound, and a subsequent spin-reorientational
transition for GdFe3(BO3)4. The Raman data evidence a strong coupling between
the lattice and magnetic degrees of freedom in these borates. The Fe-sublattice
ordering leads to a strong suppression of the low energy magnetic scattering,
and a multiple peaked two-magnon scattering continuum is observed. Evidence for
short-range correlations is found in the `paramagnetic' phase by the
observation of a broad magnetic continuum in the Raman data, which persists up
to surprisingly high temperatures.Comment: 17 pages, 13 figure
Diamagnetic susceptibility of spin-triplet ferromagnetic superconductors
We calculate the diamagnetic susceptibility in zero external magnetic field
above the phase transition from ferromagnetic phase to phase of coexistence of
ferromagnetic order and unconventional superconductivity. For this aim we use
generalized Ginzburg-Landau free energy of unconventional ferromagnetic
superconductor with spin-triplet electron pairing. A possible application of
the result to some intermetallic compounds is briefly discussed.Comment: 7 pages, 1 figur
Magnonic Crystal with Two-Dimensional Periodicity as a Waveguide for Spin Waves
We describe a simple method of including dissipation in the spin wave band
structure of a periodic ferromagnetic composite, by solving the Landau-Lifshitz
equation for the magnetization with the Gilbert damping term. We use this
approach to calculate the band structure of square and triangular arrays of Ni
nanocylinders embedded in an Fe host. The results show that there are certain
bands and special directions in the Brillouin zone where the spin wave lifetime
is increased by more than an order of magnitude above its average value. Thus,
it may be possible to generate spin waves in such composites decay especially
slowly, and propagate especially large distances, for certain frequencies and
directions in -space.Comment: 13 pages, 4 figures, submitted to Phys Rev
High Resolution Spectroscopy of the X-ray Photoionized Wind in Cygnus X-3 with the Chandra High Energy Transmission Grating Spectrometer
We present a preliminary analysis of the 1--10 keV spectrum of the massive
X-ray binary Cyg X-3, obtained with the High Energy Transmission Grating
Spectrometer on the Chandra X-ray Observatory. The source reveals a richly
detailed discrete emission spectrum, with clear signatures of
photoionization-driven excitation.
Among the spectroscopic novelties in the data are the first astrophysical
detections of a number of He-like 'triplets' (Si, S, Ar) with emission line
ratios characteristic of photoionization equilibrium, fully resolved narrow
radiative recombination continua of Mg, Si, and S, the presence of the H-like
Fe Balmer series, and a clear detection of a ~ 800 km/s large scale velocity
field, as well as a ~1500 km/s FWHM Doppler broadening in the source. We
briefly touch on the implications of these findings for the structure of the
Wolf-Rayet wind.Comment: 11 pages, 3 figures; Accepted for publication in ApJ Letter
Discovery of narrow X-ray absorption features from the dipping low-mass X-ray binary X 1624-490 with XMM-Newton
We report the discovery of narrow X-ray absorption features from the dipping
low-mass X-ray binary X 1624-490 during an XMM-Newton observation in 2001
February. The features are identified with the K alpha absorption lines of Fe
xxv and Fe xxvi and have energies of 6.72 +/- 0.03 keV and 7.00 +/- 0.02 keV
and equivalent widths (EWs) of -7.5 +1.7 -6.3 eV and -16.6 +1.9 -5.9 eV,
respectively. The EWs show no obvious dependence on orbital phase, except
during a dip, and correspond to a column of greater than 10^17.3 Fe atom /cm2.
In addition, faint absorption features tentatively identified with Ni xxvii K
alpha and Fe xxvi K beta may be present. A broad emission feature at 6.58 +0.07
-0.04 keV with an EW of 78 +19 -6 eV is also evident. This is probably the 6.4
keV feature reported by earlier missions since fitting a single Gaussian to the
entire Fe-K region gives an energy of 6.39 +0.03 -0.04 keV. A deep absorption
feature is present during the dip with an energy consistent with Fe xxv K
alpha. This is the second dipping LMXRB source from which narrow Fe absorption
features have been observed. Until recently the only X-ray binaries known to
exhibit narrow X-ray absorption lines were two superluminal jet sources and it
had been suggested that these features are related to the jet formation
mechanism. It now appears likely that ionized absorption features may be common
characteristics of accreting systems with accretion disks.Comment: 6 pages. To appear in A&
The Quiescent Optical and Infrared Counterpart to EXO 0748-676 = UY Vol
We present optical and infrared photometry of the low-mass X-ray binary EXO
0748-676 in quiescence for the first time in 24 years since it became X-ray
active in 1985. We find the counterpart at average magnitudes of R=22.4 and
J=21.3. We monitored the source approximately nightly through 2008 November to
2009 January. During this time there was considerable night-to-night optical
variability but no long term trends were apparent. The night-to-night
variability reveals a periodicity of P=0.159331+/-0.000012d, consistent with
the X-ray orbital period to within 0.01%. This indicates that the quiescent
optical modulation is indeed orbital in nature rather than a superhump.
Interestingly, the modulation remains single-peaked with a deep minimum
coincident with the times of X-ray eclipse, and there is no indication of a
double-peaked ellipsoidal modulation. This indicates that even in `quiescence'
emission from the accretion disk and/or X-ray heated inner face of the
companion star dominate the optical emission, and implies that obtaining an
accurate dynamical mass estimate in quiescence will be challenging.Comment: Accepted for publication by the Astrophysical Journal Letter
- …
