369 research outputs found
Linear Time LexDFS on Cocomparability Graphs
Lexicographic depth first search (LexDFS) is a graph search protocol which
has already proved to be a powerful tool on cocomparability graphs.
Cocomparability graphs have been well studied by investigating their
complements (comparability graphs) and their corresponding posets. Recently
however LexDFS has led to a number of elegant polynomial and near linear time
algorithms on cocomparability graphs when used as a preprocessing step [2, 3,
11]. The nonlinear runtime of some of these results is a consequence of
complexity of this preprocessing step. We present the first linear time
algorithm to compute a LexDFS cocomparability ordering, therefore answering a
problem raised in [2] and helping achieve the first linear time algorithms for
the minimum path cover problem, and thus the Hamilton path problem, the maximum
independent set problem and the minimum clique cover for this graph family
A Characterization of Mixed Unit Interval Graphs
We give a complete characterization of mixed unit interval graphs, the
intersection graphs of closed, open, and half-open unit intervals of the real
line. This is a proper superclass of the well known unit interval graphs. Our
result solves a problem posed by Dourado, Le, Protti, Rautenbach and
Szwarcfiter (Mixed unit interval graphs, Discrete Math. 312, 3357-3363 (2012)).Comment: 17 pages, referees' comments adde
On Symbolic Ultrametrics, Cotree Representations, and Cograph Edge Decompositions and Partitions
Symbolic ultrametrics define edge-colored complete graphs K_n and yield a
simple tree representation of K_n. We discuss, under which conditions this idea
can be generalized to find a symbolic ultrametric that, in addition,
distinguishes between edges and non-edges of arbitrary graphs G=(V,E) and thus,
yielding a simple tree representation of G. We prove that such a symbolic
ultrametric can only be defined for G if and only if G is a so-called cograph.
A cograph is uniquely determined by a so-called cotree. As not all graphs are
cographs, we ask, furthermore, what is the minimum number of cotrees needed to
represent the topology of G. The latter problem is equivalent to find an
optimal cograph edge k-decomposition {E_1,...,E_k} of E so that each subgraph
(V,E_i) of G is a cograph. An upper bound for the integer k is derived and it
is shown that determining whether a graph has a cograph 2-decomposition, resp.,
2-partition is NP-complete
Bounded Search Tree Algorithms for Parameterized Cograph Deletion: Efficient Branching Rules by Exploiting Structures of Special Graph Classes
Many fixed-parameter tractable algorithms using a bounded search tree have
been repeatedly improved, often by describing a larger number of branching
rules involving an increasingly complex case analysis. We introduce a novel and
general search strategy that branches on the forbidden subgraphs of a graph
class relaxation. By using the class of -sparse graphs as the relaxed
graph class, we obtain efficient bounded search tree algorithms for several
parameterized deletion problems. We give the first non-trivial bounded search
tree algorithms for the cograph edge-deletion problem and the trivially perfect
edge-deletion problems. For the cograph vertex deletion problem, a refined
analysis of the runtime of our simple bounded search algorithm gives a faster
exponential factor than those algorithms designed with the help of complicated
case distinctions and non-trivial running time analysis [21] and computer-aided
branching rules [11].Comment: 23 pages. Accepted in Discrete Mathematics, Algorithms and
Applications (DMAA
Rainbow domination and related problems on some classes of perfect graphs
Let and let be a graph. A function is a rainbow function if, for every vertex with
, . The rainbow domination number
is the minimum of over all rainbow
functions. We investigate the rainbow domination problem for some classes of
perfect graphs
On the stable degree of graphs
We define the stable degree s(G) of a graph G by s(G)∈=∈ min max d (v), where the minimum is taken over all maximal independent sets U of G. For this new parameter we prove the following. Deciding whether a graph has stable degree at most k is NP-complete for every fixed k∈≥∈3; and the stable degree is hard to approximate. For asteroidal triple-free graphs and graphs of bounded asteroidal number the stable degree can be computed in polynomial time. For graphs in these classes the treewidth is bounded from below and above in terms of the stable degree
Recording advances for neural prosthetics
An important challenge for neural prosthetics research is to record from populations of neurons over long periods of time, ideally for the lifetime of the patient. Two new advances toward this goal are described, the use of local field potentials (LFPs) and autonomously positioned recording electrodes. LFPs are the composite extracellular potential field from several hundreds of neurons around the electrode tip. LFP recordings can be maintained for longer periods of time than single cell recordings. We find that similar information can be decoded from LFP and spike recordings, with better performance for state decodes with LFPs and, depending on the area, equivalent or slightly less than equivalent performance for signaling the direction of planned movements. Movable electrodes in microdrives can be adjusted in the tissue to optimize recordings, but their movements must be automated to be a practical benefit to patients. We have developed automation algorithms and a meso-scale autonomous electrode testbed, and demonstrated that this system can autonomously isolate and maintain the recorded signal quality of single cells in the cortex of awake, behaving monkeys. These two advances show promise for developing very long term recording for neural prosthetic applications
The behavioural and neurophysiological modulation of microsaccades in monkeys
Systematic modulations of microsaccades have been observed in humans during covert orienting. We show here that monkeys are a suitable model for studying the neurophysiology governing these modulations of microsaccades. Using various cue-target saccade tasks, we observed the effects of visual and auditory cues on microsaccades in monkeys. As in human studies, following visual cues there was an early bias in cue-congruent microsaccades followed by a later bias in cue-incongruent microsaccades. Following auditory cues there was a cue-incongruent bias in left cues only. In a separate experiment, we observed that brainstem omnipause neurons, which gate all saccades, also paused during microsaccade generation. Thus, we provide evidence that at least part of the same neurocircuitry governs both large saccades and microsaccades
Fast approximation of centrality and distances in hyperbolic graphs
We show that the eccentricities (and thus the centrality indices) of all
vertices of a -hyperbolic graph can be computed in linear
time with an additive one-sided error of at most , i.e., after a
linear time preprocessing, for every vertex of one can compute in
time an estimate of its eccentricity such that
for a small constant . We
prove that every -hyperbolic graph has a shortest path tree,
constructible in linear time, such that for every vertex of ,
. These results are based on an
interesting monotonicity property of the eccentricity function of hyperbolic
graphs: the closer a vertex is to the center of , the smaller its
eccentricity is. We also show that the distance matrix of with an additive
one-sided error of at most can be computed in
time, where is a small constant. Recent empirical studies show that
many real-world graphs (including Internet application networks, web networks,
collaboration networks, social networks, biological networks, and others) have
small hyperbolicity. So, we analyze the performance of our algorithms for
approximating centrality and distance matrix on a number of real-world
networks. Our experimental results show that the obtained estimates are even
better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author
- …
