6,009 research outputs found
Pion-to-vacuum vector and axial vector amplitudes and weak decays of pions in a magnetic field
We propose a model-independent parametrization for the one-pion-to-vacuum
matrix elements of the vector and axial vector hadronic currents in the
presence of an external uniform magnetic field. It is shown that, in general,
these hadronic matrix elements can be written in terms of several gauge
covariant Lorentz structures and form factors. Within this framework we obtain
a general expression for the weak decay and discuss
the corresponding limits of strong and weak external magnetic fields.Comment: 33 page
Tendencias de los procesos de evaluación de la calidad de la educación superior en Europa.
Este artículo pretende dar cuenta de las principales tendencias acerca de los procesos de evaluación y acreditación de la calidad de los sistemas de educación superior europeos, a partir del denominado Proceso de Bologna. Concibiendo el tema de la calidad como un concepto clave en tanto se considera un bien público y como un factor determinante de la competitividad de un país, nos proponemos dar cuenta de las tendencias en este campo y plantear algunas conclusiones que contribuyan al análisis y el debate
The Stationary Phase Method for a Wave Packet in a Semiconductor Layered System. The applicability of the method
Using the formal analysis made by Bohm in his book, {\em "Quantum theory"},
Dover Publications Inc. New York (1979), to calculate approximately the phase
time for a transmitted and the reflected wave packets through a potential
barrier, we calculate the phase time for a semiconductor system formed by
different mesoscopic layers. The transmitted and the reflected wave packets are
analyzed and the applicability of this procedure, based on the stationary phase
of a wave packet, is considered in different conditions. For the applicability
of the stationary phase method an expression is obtained in the case of the
transmitted wave depending only on the derivatives of the phase, up to third
order. This condition indicates whether the parameters of the system allow to
define the wave packet by its leading term. The case of a multiple barrier
systems is shown as an illustration of the results. This formalism includes the
use of the Transfer Matrix to describe the central stratum, whether it is
formed by one layer (the single barrier case), or two barriers and an inner
well (the DBRT system), but one can assume that this stratum can be comprise of
any number or any kind of semiconductor layers.Comment: 15 pages, 4 figures although figure 4 has 5 graph
Recommended from our members
DNA Methylation Analysis Validates Organoids as a Viable Model for Studying Human Intestinal Aging.
Background & aimsThe epithelia of the intestine and colon turn over rapidly and are maintained by adult stem cells at the base of crypts. Although the small intestine and colon have distinct, well-characterized physiological functions, it remains unclear if there are fundamental regional differences in stem cell behavior or region-dependent degenerative changes during aging. Mesenchyme-free organoids provide useful tools for investigating intestinal stem cell biology in vitro and have started to be used for investigating age-related changes in stem cell function. However, it is unknown whether organoids maintain hallmarks of age in the absence of an aging niche. We tested whether stem cell-enriched organoids preserved the DNA methylation-based aging profiles associated with the tissues and crypts from which they were derived.MethodsTo address this, we used standard human methylation arrays and the human epigenetic clock as a biomarker of age to analyze in vitro-derived, 3-dimensional, stem cell-enriched intestinal organoids.ResultsWe found that human stem cell-enriched organoids maintained segmental differences in methylation patterns and that age, as measured by the epigenetic clock, also was maintained in vitro. Surprisingly, we found that stem cell-enriched organoids derived from the small intestine showed striking epigenetic age reduction relative to organoids derived from colon.ConclusionsOur data validate the use of organoids as a model for studying human intestinal aging and introduce methods that can be used when modeling aging or age-onset diseases in vitro
Electronic States in Diffused Quantum Wells
In the present study we calculate the energy values and the spatial
distributions of the bound electronic states in some diffused quantum wells.
The calculations are performed within the virtual crystal approximation, spin dependent empirical tight-binding model and the surface Green
function matching method. A good agreement is found between our results and
experimental data obtained for AlGaAs/GaAs quantum wells with thermally induced
changes in the profile at the interfaces. Our calculations show that for
diffusion lengths {\AA} the transition (C3-HH3) is not
sensitive to the diffusion length, but the transitions (C1-HH1), (C1-LH1),
(C2-HH2) and (C2-LH2) display large "blue shifts" as L_{D} increases. For
diffusion lengths {\AA} the transitions (C1-HH1) and (C1-LH1)
are less sensitive to the L_{D} changes than the (C3-HH3) transition. The
observed dependence is explained in terms of the bound states spatial
distributions.Comment: ReVTeX file, 7pp., no macros, 4 figures available on the reques
Radiative heat power at Stromboli volcano during 2000–2011: Twelve years of MODIS observations
Fast and Accurate Computation of Orbital Collision Probability for Short-Term Encounters
International audienceThis article provides a new method for computing the probability of collision between two spherical space objects involved in a short-term encounter under Gaussian-distributed uncertainty. In this model of conjunction, classical assumptions reduce the probability of collision to the integral of a two-dimensional Gaussian probability density function over a disk. The computational method presented here is based on an analytic expression for the integral, derived by use of Laplace transform and D-finite functions properties. The formula has the form of a product between an exponential term and a convergent power series with positive coefficients. Analytic bounds on the truncation error are also derived and are used to obtain a very accurate algorithm. Another contribution is the derivation of analytic bounds on the probability of collision itself, allowing for a very fast and - in most cases - very precise evaluation of the risk. The only other analytical method of the literature - based on an approximation - is shown to be a special case of the new formula. A numerical study illustrates the efficiency of the proposed algorithms on a broad variety of examples and favorably compares the approach to the other methods of the literature
Recommended from our members
Immunosuppressive effect and global dysregulation of blood transcriptome in response to psychosocial stress in vervet monkeys (Chlorocebus sabaeus).
Psychosocial stressors - life events that challenge social support and relationships - represent powerful risk factors for human disease; included amongst these events are relocation, isolation and displacement. To evaluate the impact of a controlled psychosocial stressor on physiology and underlying molecular pathways, we longitudinally studied the influence of a 28-day period of quarantine on biomarkers of immune signalling, microbial translocation, glycaemic health and blood transcriptome in the wild-born vervet monkey. This event caused a coordinated, mostly transient, reduction of circulating levels of nine immune signalling molecules. These were paralleled by a massive dysregulation of blood transcriptome, including genes implicated in chronic pathologies and immune functions. Immune and inflammatory functions were enriched among the genes downregulated in response to stress. An upregulation of genes involved in blood coagulation, platelet activation was characteristic of the rapid response to stress induction. Stress also decreased neutrophils and increased CD4 + T cell proportions in blood. This model of psychosocial stress, characterised by an immune dysregulation at the transcriptomic, molecular and cellular levels, creates opportunities to uncover the underlying mechanisms of stress-related diseases with an immune component, including cardiovascular diseases and susceptibility to infections
Ion chemistry in the early universe: revisiting the role of HeH+ with new quantum calculations
The role of HeH+ has been newly assessed with the aid of newly calculated
rates which use entirely ab initio methods, thereby allowing us to compute more
accurately the relevant abundances within the global chemical network of the
early universe. A comparison with the similar role of the ionic molecule LiH+
is also presented. Quantum calculations have been carried out for the gas-phase
reaction of HeH+ with H atoms with our new in-house code, based on the negative
imaginary potential method. Integral cross sections and reactive rate
coefficients obtained under the general conditions of early universe chemistry
are presented and discussed. With the new reaction rate, the abundance of HeH+
in the early universe is more than one order of magnitude larger than in
previous studies. Our more accurate findings further buttress the possibility
to detect cosmological signatures of HeH+.Comment: Astronomy and Astrophysics, in pres
- …
