646 research outputs found
The effect of sample properties on the electron velocity in quantum Hall bars
We report on our theoretical investigation of the effects of the confining
potential profile and sample size on the electron velocity distribution in
(narrow) quantum-Hall systems. The electrostatic properties of the electron
system are obtained by the Thomas-Fermi-Poisson nonlinear screening theory. The
electron velocity distribution as a function of the lateral coordinate is
obtained from the slope of the screened potential at the Fermi level and within
the incompressible strips (ISs). We compare our findings with the recent
experiments.Comment: 8 pages, 6 figure
Sustainable development of smallholder crop-livestock farming in developing countries
Meeting the growing demand for animal-sourced food, prompted by population growth and increases in average per-capita income in low-income countries, is a major challenge. Yet, it also presents significant potential for agricultural growth, economic development, and reduction of poverty in rural areas. The main constraints to livestock producers taking advantage of growing markets include; lack of forage and feed gaps, communal land tenure, limited access to land and water resources, weak institutions, poor infrastructure and environmental degradation. To improve rural livelihood and food security in smallholder crop-livestock farming systems, concurrent work is required to address issues regarding efficiency of production, risk within systems and development of whole value chain systems. This paper provides a review of several forage basedstudies in tropical and non-tropical dry areas of the developing countries. A central tenet of this paper is that forages have an essential role in agricultural productivity, environmental sustainability and livestock nutrition in smallholder mixed farming systems
Realistic modelling of quantum point contacts subject to high magnetic fields and with current bias at out of linear response regime
The electron and current density distributions in the close proximity of
quantum point contacts (QPCs) are investigated. A three dimensional Poisson
equation is solved self-consistently to obtain the electron density and
potential profile in the absence of an external magnetic field for gate and
etching defined devices. We observe the surface charges and their apparent
effect on the confinement potential, when considering the (deeply) etched QPCs.
In the presence of an external magnetic field, we investigate the formation of
the incompressible strips and their influence on the current distribution both
in the linear response and out of linear response regime. A spatial asymmetry
of the current carrying incompressible strips, induced by the large source
drain voltages, is reported for such devices in the non-linear regime.Comment: 16 Pages, 9 Figures, submitted to PR
Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers
Cataloged from PDF version of article.We proposed and demonstrated architectural tuning of color chromaticity by controlling photoluminescence decay kinetics through nonradiative Forster resonance energy transfer in the heterostructure of layer-by-layer spaced CdTe nanocrystal (NC) solids. We achieved highly sensitive tuning by precisely adjusting the energy transfer efficiency from donor NCs to acceptor NCs via controlling interspacing between them at the nanoscale. By modifying decay lifetimes of donors from 12.05 to 2.96 ns and acceptors from 3.68 to 14.57 ns, we fine-tuned chromaticity coordinates from (x,y)=(0.575,0.424) to (0.632, 0.367). This structural adjustment enabled a postsynthesis color tuning capability, alternative or additive to using the size, shape, and composition of NCs
Colorectal cancer linkage on chromosomes 4q21, 8q13, 12q24, and 15q22
A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD = 4.51, α = 0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD = 3.60, α = 0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD = 3.07, α = 0.29; dominant HLOD = 3.03, α = 0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD = 3.02, α = 0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated. © 2012 Cicek et al
Assessing the agronomic value of hog manure-derived struvite as a phosphorus source for spring wheat
Non-Peer ReviewedRecovery of phosphorus (P) from liquid hog manure is one option for minimizing P loss from hog operations to surface water bodies, where it can cause eutrophication. The P, recovered as magnesium ammonium phosphate hexahydrate (MgNH4PO4∙6H2O), commonly known as struvite, has slow-release properties, which could improve P use efficiency in cropping systems. This greenhouse bioassay evaluated the effectiveness of struvite as a P source for spring wheat. Struvite, monoammonium phosphate (MAP), and polymer-coated monoammonium phosphate (CMAP) were applied at rates of 25 and 50 kg P2O5 ha-1 either in the seed-row or in a side-band in the first of three crop cycles. Results for Cycle 1 indicated no significant P source, rate, application method, and soil main effects on aboveground wheat dry matter yield (DMY). Phosphorus uptake (PU) in Cycle 1, averaged across soils, rates, and applications methods, was significantly greater with MAP (5.1 mg kg-1) and CMAP (4.9 mg kg-1) than with struvite (4.1 mg kg-1) application. Similarly, P uptake efficiency (PUE) was greater for MAP (21%) and CMAP (18%) than for struvite (12%). For the second and third crop cycles in which wheat followed canola, DMY, PU, and PUE were similar for the P sources, regardless of rate, placement, or soil. These results suggest that while struvite was as good as the commercial P fertilizers with respect to DMY and, in Cycles 2 and 3, PU and PUE, it did not exhibit the beneficial residual effects that typically characterize slow release fertilizers. Nonetheless, it is encouraging to note that the unrefined struvite, which is a by-product of manure management for environmental goals, can perform as well as commercial fertilizers that are optimized for agronomic performance
An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis
Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is
a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a
complex disease caused by metastasis of tumor cells from their primary site and
is characterized by intricate interplay of molecular interactions.
Identification of targets for multifactorial diseases such as SBC, the most
frequent complication of breast and prostate cancers, is a challenge. Towards
achieving our aim of identification of targets specific to SBC, we constructed
a 'Cancer Genes Network', a representative protein interactome of cancer genes.
Using graph theoretical methods, we obtained a set of key genes that are
relevant for generic mechanisms of cancers and have a role in biological
essentiality. We also compiled a curated dataset of 391 SBC genes from
published literature which serves as a basis of ontological correlates of
secondary bone cancer. Building on these results, we implement a strategy based
on generic cancer genes, SBC genes and gene ontology enrichment method, to
obtain a set of targets that are specific to bone metastasis. Through this
study, we present an approach for probing one of the major complications in
cancers, namely, metastasis. The results on genes that play generic roles in
cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have
broader implications in understanding the role of molecular regulators in
mechanisms of cancers. Specifically, our study provides a set of potential
targets that are of ontological and regulatory relevance to secondary bone
cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary
information). Revised after critical reviews. Accepted for Publication in
PLoS ON
Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed
Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)
- …
