research

Realistic modelling of quantum point contacts subject to high magnetic fields and with current bias at out of linear response regime

Abstract

The electron and current density distributions in the close proximity of quantum point contacts (QPCs) are investigated. A three dimensional Poisson equation is solved self-consistently to obtain the electron density and potential profile in the absence of an external magnetic field for gate and etching defined devices. We observe the surface charges and their apparent effect on the confinement potential, when considering the (deeply) etched QPCs. In the presence of an external magnetic field, we investigate the formation of the incompressible strips and their influence on the current distribution both in the linear response and out of linear response regime. A spatial asymmetry of the current carrying incompressible strips, induced by the large source drain voltages, is reported for such devices in the non-linear regime.Comment: 16 Pages, 9 Figures, submitted to PR

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020