168 research outputs found

    Slowing the Time-Fluctuating MIMO Channel by Beam Forming

    Full text link

    Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity

    Get PDF
    One of the key photophysical properties of fluorescent proteins that is most difficult to measure is the quantum yield. It describes how efficiently a fluorophore converts absorbed light into fluorescence. Its measurement using conventional methods become particularly problematic when it is unknown how many of the proposedly fluorescent molecules of a sample are indeed fluorescent (for example due to incomplete maturation, or the presence of photophysical dark states). Here, we use a plasmonic nanocavity-based method to measure absolute quantum yield values of commonly used fluorescent proteins. The method is calibration-free, does not require knowledge about maturation or potential dark states, and works on minute amounts of sample. The insensitivity of the nanocavity-based method to the presence of non-luminescent species allowed us to measure precisely the quantum yield of photo-switchable proteins in their on-state and to analyze the origin of the residual fluorescence of protein ensembles switched to the dark state

    РасчСт эффСктивных мСханичСских характСристик ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ массива Π³ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄

    Get PDF
    An approach has been developed to construct functional expressions for calculating the effective mechanical characteristics of the undermined rock massif during its repeated mining, taking into account the disturbance of the different-type massif continuity and the time passed after the undermining. The approach was developed as applied to the conditions of the Starobin potash salt deposit. It is based on introducing special correction factors into the expressions for mechanical characteristics of the massif. At the same time, the state of the undermined massif area is considered in the continuum model approximation. It is shown that one of the most important factors to be considered when constructing the functional dependence for mechanical characteristics of the undermined layered massif is to take into account the mutual slippage of layers and their lamination related to it, because the strength characteristics such as bonding strength and internal friction coefficient mainly change when the massif is undermined. The algorithm for calculating the mechanical properties of the undermined massif proposes the use of correction factors that take into account the heterogeneity of the rock massif; lamination and slippage of the contacting layers; changes in the properties of the undermined massif with variation of the depth of repeated mining; changes in the properties resulting from the technological disturbance of the massif initial equilibrium state (primary undermining, time passed since the primary undermining).Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ для расчСта эффСктивных мСханичСских характСристик ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ массива Π³ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄ ΠΏΡ€ΠΈ Π΅Π³ΠΎ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½ΠΎΠΉ ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ ΡΠΏΠ»ΠΎΡˆΠ½ΠΎΡΡ‚ΠΈ массива Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΏΡ€ΠΎΡˆΠ΅Π΄ΡˆΠ΅Π³ΠΎ послС ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. Π’ основу ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ Π² выраТСния для мСханичСских характСристик массива. ΠŸΡ€ΠΈ этом состояниС ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ области массива рассматриваСтся Π² ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡΠΏΠ»ΠΎΡˆΠ½Ρ‹Ρ… срСд. Показано, Ρ‡Ρ‚ΠΎ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ трСбуСтся ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ построСнии Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ зависимости для мСханичСских характСристик ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ слоистого массива, являСтся ΡƒΡ‡Π΅Ρ‚ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΡΠΊΠ°Π»ΡŒΠ·Ρ‹Π²Π°Π½ΠΈΡ слоСв ΠΈ связанного с Π½ΠΈΠΌ ΠΈΡ… отслоСния, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ массива Π³Π»Π°Π²Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΈΠ΅ прочностныС характСристики, ΠΊΠ°ΠΊ сцСплСниС ΠΈ коэффициСнт Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ трСния. Алгоритм расчСта мСханичСских характСристик ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ массива ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ использованиС ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ массива Π³ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄; расслоСниС ΠΈ ΠΏΡ€ΠΎΡΠΊΠ°Π»ΡŒΠ·Ρ‹Π²Π°Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… слоСв; измСнСния свойств ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ массива ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½ΠΎΠΉ ΠΎΡ‚Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ свойств Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ тСхнологичСского Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ СстСствСнного равновСсного состояния массива (пСрвичная ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚ΠΊΠ°, врСмя, ΠΏΡ€ΠΎΡˆΠ΅Π΄ΡˆΠ΅Π΅ со Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ)

    ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ состояния ΠΈ прочностныС характСристики ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½ΠΎ ΠΏΠΎΠ΄Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… массивов Π³ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄

    Get PDF
    Methodological approaches to the selection of ultimate state criteria and strength characteristics of the repeatedly undermined rock massifs were developed. These approaches were designed to provide parametric support to the geomechanical modelling of the massif stress-strain state and the mining systems of the Starobin potash deposit mine fields planned for the additional mining of the mineral reserves left. It was established that a complex criterion must be used to study the massif ultimate state. Determination of such criterion can be carried out using the developed approaches. The first approach is to select several criteria that evaluate the massif ultimate state by certain types of the massif stress-strain state. These criteria are the following: the criterion of the maximum normal stresses, criterion of the maximum linear strains, the criterion of the maximum shear stresses and the Coulomb–Mohr failure criterion. The second approach is to construct an integrated failure state criterion for materials whose ultimate tensile and compressive stresses differ significantly. In this case, parameters characterizing the type of stress state and properties of the material are introduced. These parameters together determine the destruction character – tear or shear. To describe the rocks behavior in the extreme strength stage of deformation, it is proposed to apply deformation theory of strength using the developed strain failure criterion. When calculating the strength characteristics of the repeatedly undermined rock massif, it is recommended to use a structural attenuation coefficient as the product of several factors, taking into account various types of disturbances in the primary undermined massif and the time factor. The Coulomb–Mohr strength condition is recommended to be used taking into account the composite structural attenuation coefficient. Dependencies have been developed to describe the change in the strength characteristics of rocks in the undermined massif, considering the attenuation coefficient.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ мСтодичСскиС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Π²Ρ‹Π±ΠΎΡ€Ρƒ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ состояния ΠΈ прочностных характСристик ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½ΠΎ ΠΏΠΎΠ΄Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… массивов Π³ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄, ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… для парамСтричСского обСспСчСния гСомСханичСского модСлирования напряТСнно-Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ состояния массива ΠΈ горнотСхничСских систСм участков ΡˆΠ°Ρ…Ρ‚Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ Бтаробинского мСстороТдСния ΠΊΠ°Π»ΠΈΠΉΠ½ΠΎΠΉ Ρ€ΡƒΠ΄Ρ‹, ΠΏΠ»Π°Π½ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… для доизвлСчСния оставлСнных запасов ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠ³ΠΎ ископаСмого. УстановлСно, Ρ‡Ρ‚ΠΎ для изучСния ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ состояния массива Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ комплСксный ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΎΠ³ΠΎ критСрия ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ с использованиСм Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ². ΠŸΠ΅Ρ€Π²Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Π²Ρ‹Π±ΠΎΡ€Π΅ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π², ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ΅ состояниС массива ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ‚ΠΈΠΏΠ°ΠΌ напряТСнно-Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ состояния массива: критСрия Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΠΈΡ… Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… напряТСний, критСрия Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΠΈΡ… Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ, критСрия наибольшСго ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ напряТСния, критСрия ΠšΡƒΠ»ΠΎΠ½Π°β€“ΠœΠΎΡ€Π°. Π’Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² построСнии объСдинСнного критСрия ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ состояния ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° для ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ напряТСний Π½Π° растяТСниС ΠΈ сТатиС ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ сущСствСнным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. ΠŸΡ€ΠΈ этом вводятся ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ Π²ΠΈΠ΄ напряТСнного состояния ΠΈ свойства ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² совокупности ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ – ΠΎΡ‚Ρ€Ρ‹Π² ΠΈΠ»ΠΈ срСз. Для описания повСдСния Π³ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄ Π² Π·Π°ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎ прочности стадии дСформирования прСдлагаСтся ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΡƒΡŽ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ прочности с использованиСм Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ зависимости Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ критСрия прочности. ΠŸΡ€ΠΈ расчСтС прочностных характСристик ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½ΠΎ ΠΏΠΎΠ΄Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ массива Π³ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄ рСкомСндуСтся ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ коэффициСнт структурного ослаблСния Π² Π²ΠΈΠ΄Π΅ произвСдСния Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… коэффициСнтов, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Ρ‚ΠΈΠΏΡ‹ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎ ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ массива ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€. УсловиС прочности ΠšΡƒΠ»ΠΎΠ½Π°β€“ΠœΠΎΡ€Π° рСкомСндуСтся ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ составного коэффициСнта структурного ослаблСния. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ зависимости, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ прочностных характСристик ΠΏΠΎΡ€ΠΎΠ΄ Π² ΠΏΠΎΠ΄Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΌ массивС с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ коэффициСнта разрыхлСния

    ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ ΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎ-Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ комплСкса для исслСдования эффСктивности экранирования низкочастотного элСктромагнитного излучСния

    Get PDF
    Optimization of the radiation coil of the hardware-software complex for studying the effectiveness of shielding of low-frequency electromagnetic radiation will make it possible to assess the effectiveness of shielding coatings at a higher level. This fact will make it possible to develop coatings with improved characteristics. The purpose of this work was to determine the optimal characteristics of the emitting coil which will ensure its stable operation and magnetic field strength in the frequency range up to 100 kHz.The parameters of the manufactured samples, such as inductance (L), active (R) and total resistance (Z), were obtained using an MNIPI E7-20 emittance meter. In practice, the coils with the optimal parameters calculated theoretically were connected to a current source and amplifier. To detect electromagnetic radiation, a multilayer inductor connected to a UTB-TREND 722-050-5 oscilloscope was used as a signal receiver.The results of measurements showed that the resistance of multilayer coils is approximately 1000 times higher than that of single-layer coils. Also, for multilayer coils, an avalanche-like increase in total resistance is observed starting from a frequency of 10 kHz, while for single-layer coils there is a uniform increase in total resistance over the entire frequency range up to 100 kHz.The paper presents results of research on the correlation of the performance of single-layer and multilayer inductors depending on their parameters in the frequency range from Β 20 Hz Β to Β 100 kHz. Values of the voltage required to provide the magnetic field strength of 1, 5, 20 Oe at 25 Hz and 100 kHz have been calculated. After analyzing the data obtained, the optimal parameters of the inductor were found which ensure stable performance in the frequency range up to 100 kHz.ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ ΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎ-Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ комплСкса для исслСдования эффСктивности экранирования низкочастотного элСктромагнитного излучСния ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Π½Π° Π±ΠΎΠ»Π΅Π΅ качСствСнном ΡƒΡ€ΠΎΠ²Π½Π΅ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Ρ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΡΠΊΡ€Π°Π½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ. Π”Π°Π½Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ даст Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Ρ‚ΡŒ покрытия с ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½Ρ‹ΠΌΠΈ характСристиками. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… характСристик ΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ обСспСчат Π΅Ρ‘ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρƒ ΠΈ Π½Π°ΠΏΡ€ΡΠΆΡ‘Π½Π½ΠΎΡΡ‚ΡŒ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π² частотном Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄ΠΎ 100 ΠΊΠ“Ρ†.ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΈ ΠΎΠ±Ρ‰Π΅Π΅ сопротивлСниС, Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒ иммитанса МНИПИ E7-20. На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ с ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ, вычислСнными тСорСтичСски, Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ ΠΊ источнику ΠΈ ΡƒΡΠΈΠ»ΠΈΡ‚Π΅Π»ΡŽ Ρ‚ΠΎΠΊΠ°. Для дСтСктирования элСктромагнитного излучСния Π² качСствС ΠΏΡ€ΠΈΡ‘ΠΌΠ½ΠΈΠΊΠ° сигнала использовалась многослойная ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠ° индуктивности, ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Ρ‘Π½Π½Π°Ρ ΠΊ осциллографу UTB-TREND 722-050-5.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ сопротивлСниС многослойных ΠΊΠ°Ρ‚ΡƒΡˆΠ΅ΠΊ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π² 1000 Ρ€Π°Π· большС сопротивлСния однослойных. Π’Π°ΠΊΠΆΠ΅ Ρƒ многослойных ΠΊΠ°Ρ‚ΡƒΡˆΠ΅ΠΊ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π»Π°Π²ΠΈΠ½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹ΠΉ рост ΠΎΠ±Ρ‰Π΅Π³ΠΎ сопротивлСния, начиная с частоты 10 ΠΊΠ“Ρ†, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Ρƒ однослойных ΠΊΠ°Ρ‚ΡƒΡˆΠ΅ΠΊ происходит Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΉ рост ΠΎΠ±Ρ‰Π΅Π³ΠΎ сопротивлСния Π½Π° всём Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ частот Π΄ΠΎ 100 ΠΊΠ“Ρ†. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований коррСляции Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… характСристик  однослойных Β ΠΈ многослойных  ΠΊΠ°Ρ‚ΡƒΡˆΠ΅ΠΊΒ  индуктивности  Π²Β  зависимости  ΠΎΡ‚Β  ΠΈΡ…Β  ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²Β  Π²Β  частотном  Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΎΡ‚ 20 Π“Ρ† Π΄ΠΎ 100 ΠΊΠ“Ρ†. Рассчитаны значСния напряТСния, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ для обСспСчСния напряТённости ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля 1, 5, 20 Π­ ΠΏΡ€ΠΈ 25 Π“Ρ† ΠΈ 100 ΠΊΠ“Ρ†. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π² ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅, Π½Π°ΠΉΠ΄Π΅Π½Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ индуктивности, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‡ΠΈΠ΅ характСристики Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ частот Π΄ΠΎ 100 ΠΊΠ“Ρ†

    Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell

    Full text link
    The high pressure and high temperature phase diagram of Ta has been studied in a laser-heated diamond-anvil cell (DAC) using x-ray diffraction measurements up to 52 GPa and 3800 K. The melting was observed at nine different pressures, being the melting temperature in good agreement with previous laser-heated DAC experiments, but in contradiction with several theoretical calculations and previous piston-cylinder apparatus experiments. A small slope for the melting curve of Ta is estimated (dTm/dP = 24 K/GPa at 1 bar) and a possible explanation for this behaviour is given. Finally, a P-V-T equation of states is obtained, being the temperature dependence of the thermal expansion coefficient and the bulk modulus estimated.Comment: 31 pages, 8 figures, to appear in J.Phys.:Cond.Matte

    On the Transmit Beamforming for MIMO Wiretap Channels: Large-System Analysis

    Full text link
    With the growth of wireless networks, security has become a fundamental issue in wireless communications due to the broadcast nature of these networks. In this work, we consider MIMO wiretap channels in a fast fading environment, for which the overall performance is characterized by the ergodic MIMO secrecy rate. Unfortunately, the direct solution to finding ergodic secrecy rates is prohibitive due to the expectations in the rates expressions in this setting. To overcome this difficulty, we invoke the large-system assumption, which allows a deterministic approximation to the ergodic mutual information. Leveraging results from random matrix theory, we are able to characterize the achievable ergodic secrecy rates. Based on this characterization, we address the problem of covariance optimization at the transmitter. Our numerical results demonstrate a good match between the large-system approximation and the actual simulated secrecy rates, as well as some interesting features of the precoder optimization.Comment: Published in Lecture Notes in Computer Science 8317, pp. 90-102, 2014. (Proceedings of International Conference on Information-Theoretic Security (ICITS), Singapore, November 2013

    Π’ΠΎΠ½ΠΊΠΈΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ покрытия Π½Π° основС ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½Π° с нСорганичСскими наночастицами

    Get PDF
    A technique for the formation of gelatin thin films and composite coatings with silicon dioxide and zinc oxide nanoparticles by spin coating has been developed. New data of the morphology and structural characteristics of the formed gelatin and nanocomposite films were obtained by atomic force microscopy. The dependences of the roughness parameters of composite coatings on the content of silicon dioxide and zinc oxide nanoparticles in the polymer matrix are presented. It has been shown that the introduction of inorganic nanoparticles into the gelatin structure makes it possible to form nanocomposites with a rough surface. It has been established that the silicon dioxide nanoparticles incorporation leads to hydrophobization of the surface of polymer-inorganic films based on gelatin. Modification with zinc oxide nanoparticles (up to 8 mg per 1 mg of gelatin) improves the wettability of nanocomposite coatings with water.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° формирования Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½Π° ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ с наночастицами диоксида крСмния ΠΈ оксида Ρ†ΠΈΠ½ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ спин-ΠΊΠΎΠ°Ρ‚ΠΈΠ½Π³Π°. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π°Ρ‚ΠΎΠΌΠ½ΠΎ-силовой микроскопии ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ структурных характСристиках сформированных ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΈ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠ»Π΅Π½ΠΎΠΊ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ зависимости ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ ΠΎΡ‚ содСрТания наночастиц диоксида крСмния ΠΈ оксида Ρ†ΠΈΠ½ΠΊΠ° Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅. Показано, Ρ‡Ρ‚ΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ нСорганичСских наночастиц Π² структуру ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½Π° позволяСт Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ‹ с Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ. УстановлСно, Ρ‡Ρ‚ΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ наночастиц диоксида крСмния ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±ΠΈΠ·Π°Ρ†ΠΈΠΈ повСрхности ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€-нСорганичСских ΠΏΠ»Π΅Π½ΠΎΠΊ Π½Π° основС ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½Π°, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ модификация наночастицами оксида Ρ†ΠΈΠ½ΠΊΠ° (Π΄ΠΎ 8 ΠΌΠ³ Π½Π° 1 ΠΌΠ³ ΠΆΠ΅Π»Π°Ρ‚ΠΈΠ½Π°) позволяСт ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ ΡΠΌΠ°Ρ‡ΠΈΠ²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ Π²ΠΎΠ΄ΠΎΠΉ
    • …
    corecore