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ULTIMATE STATE CRITERIA AND STRENGTH CHARACTERISTICS OF THE ROCK
MASSIFS BEING UNDERMINED REPEATEDLY

Abstract. Methodological approaches to the selection of ultimate state criteria and strength characteristics of the repeatedly
undermined rock massifs were developed. These approaches were designed to provide parametric support to the geomechanical
modelling of the massif stress-strain state and the mining systems of the Starobin potash deposit mine fields planned for the ad-
ditional mining of the mineral reserves left. It was established that a complex criterion must be used to study the massif ultimate
state. Determination of such criterion can be carried out using the developed approaches. The first approach is to select several
criteria that evaluate the massif ultimate state by certain types of the massif stress-strain state. These criteria are the following:
the criterion of the maximum normal stresses, criterion of the maximum linear strains, the criterion of the maximum shear
stresses and the Coulomb—Mohr failure criterion. The second approach is to construct an integrated failure state criterion for
materials whose ultimate tensile and compressive stresses differ significantly. In this case, parameters characterizing the type of
stress state and properties of the material are introduced. These parameters together determine the destruction character — tear or
shear. To describe the rocks behavior in the extreme strength stage of deformation, it is proposed to apply deformation theory of
strength using the developed strain failure criterion. When calculating the strength characteristics of the repeatedly undermined
rock massif, it is recommended to use a structural attenuation coefficient as the product of several factors, taking into account
various types of disturbances in the primary undermined massif and the time factor. The Coulomb—Mohr strength condition is
recommended to be used taking into account the composite structural attenuation coefficient. Dependencies have been developed
to describe the change in the strength characteristics of rocks in the undermined massif, considering the attenuation coefficient.
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KPUTEPUU MPEAEJBHOI'O COCTOAHUA U TIPOYHOCTHBIE XAPAKTEPUCTHUKHU IOBTOPHO
HOJAPABATBIBAEMBIX MACCHUBOB I'OPHBIX ITIOPO/]

AHHoTanus. Pa3paboTansl MeTOAMUECKNE TTOAXO/BI K BEIOOPY KPUTEPHEB MPEACTHHOIO COCTOSHUS U IIPOYHOCTHBIX Xa-
PaKTEPUCTHUK MOBTOPHO MOAPabaThIBAEMBIX MACCHBOB TOPHBIX MOPOA, MPEAHA3HAYEHHBIX JUISI TAPAMETPUUYECKOTO obecrede-
HUSI TEOMEXaHNYECKOTr0 MOJIEIMPOBAHNUS HANlPSKEHHO-1e(OPMUPOBAHHOTO COCTOSIHUS MACCHBA U TOPHOTEXHUYECKUX CHCTEM
Y4aCTKOB IIAXTHBIX Mojel CTapoOUHCKOro MECTOPOXKACHHS KaJIUIHOM py/Ibl, IJIAHUPYEMBbIX IS JOU3BJICUEHUS OCTABJICHHBIX
3aI1acoB ITOJIE3HOT0 HCKOIIaeMOro. YCTaHOBIICHO, UTO JUISl M3y Y€HHS IIPE/IeTbHOr0 COCTOSTHUSI MacCHBa HEOOXOANMO MPUMEHSTh
KOMIUTEKCHBIN KpuTepuid. OlpeneieHne Takoro KpUTeP st MOXKHO BEITIOTHUTH C HCTIOIB30BaHNEM Pa3pabOTaHHBIX ITOAXOJIOB.
INepBbIii MOIXOM 3aKIIIOUACTCS B BRIOOPE HECKOIBKHX KPUTECPHEB, OLEHUBAIONINX MIPEACIBEHOE COCTOSHIE MAaCCUBA 110 OT/ACIb-
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HBIM THIIAM HAPSDKEHHO-Ie()OPMUPOBAHHOTO COCTOSHHSI MACCHUBA: KPUTEPHUsT HAMOOIBIINX HOPMAJIBHBIX HAMIPSIKEHHUH, KPHU-
Tepusi HaHOOJBIINX JTMHEHHBIX AeopMannii, KpUTEpUs: HAHOOIBIIEro KacaTeIbHOr0 HaNpsDKkeHus, Kputepust Kymona—Mopa.
Bropoii moaxo/ 3aKII049aeTCs B IOCTPOCHUH 00 BETHHEHHOTO KPUTEPHSI TIPESISTBHOIO COCTOSIHHUS IIPEIIaraeMoro BUa /st Ma-
TEPHUAJIOB, Y KOTOPBIX MPEACTbHbIC BETMYMHBI HAMPSDKCHUI HA PACTSIKEHHE M CXKATHE OTIIMYAIOTCS CYIIECTBEHHBIM 00pa3oM.
ITpu 5TOM BBOASITCS MapaMeTpPbl, XapaKTepHU3yOIHe BH/] HAIIPSHKEHHOTO COCTOSIHHS M CBOWCTBA Marepuaa, KOTOPbhIe B COBO-
KYITHOCTH ONPECISIIOT XapaKkTep pa3pylieHHs — OTPBIB MK cpe3. J{Jisl onucanus MOBEACHHs TOPHBIX MOPOJ B 3aMPEACIbHOM
[0 IPOYHOCTH CTAHH 1ehOPMUPOBAHUS PEITAraeTCs MIPUMEHSTh Ae(OPMALMOHHY IO TEOPHUIO IIPOYHOCTH C HCIIOIb30BAaHUEM
pa3paboTaHHOW 3aBUCHMMOCTH Je(h)OPMAIIMOHHOTO KPUTEepHsl pouHocTH. [Ipu pacueTe MpOYHOCTHBIX XapaKTEPUCTUK TTOBTOP-
HO 1o1pabaThiBaeMOr0 MaCCHBA FOPHBIX MOPOJ PEKOMEHTYeTCs HPUMEHTh KOIQ(PUIIHEHT CTPYKTYPHOr0 OcIabieHus B BUE
IPOU3BECHUS HECKOJIBKUX KOA(P(UIIMEHTOB, YUUTHIBAIOIINX PA3JIMYHbIC TUIIBI HAPYIICHUS IEPBUYHO MOAPAOOTAHHOTO Mac-
cHBa M BpeMeHHOW (akrop. Ycioue npounoctu Kyinona—Mopa pekoMeHIyeTcst UCIONIb30BaTh C YYETOM COCTaBHOIO KOI(-
¢unreHTa cTpyKTypHOro ociadnenus. PazpaboTaHbl 3aBUCHMOCTH, ONUCHIBAIOIINE U3MEHEHHE IIPOYHOCTHBIX XapaKTePUCTHK
HOPOJ B OIPabOTaAHHOM MacCHBE C y4eTOM KO (PHIIMEHTA pa3phIXJICHHS.

KiroueBble cjioBa: CIOUCTBHII MacCHB TOPHBIX ITOPOJ, MEXaHHUYECKHE XapaKTePUCTUKH, HANPsHKEHHO-1e()OopMHpOBaH-
HOE COCTOSIHHE

Jast uuTupoBanus: Kpurepnu npeaeabHoro COCTOSHUS U IIPOYHOCTHBIE XapaKTePUCTHKH TOBTOPHO MOipabaThIBaeMbIX
MaccuBoB TopHbIX mopon / C. A. Unxuk [u np.] / Bec. Han. akan. HaByk benapyci. Cep. ¢i3.-toxH. HaByk. — 2021. — T. 66,
Ne4. — C. 420—4209. https://doi.org/10.29235/1561-8358-2021-66-4-420-429

Introduction. At the present time, additional mining of the previously mined out panels is actual
for the Starobin potash salt deposit in order to extract the left ore reserves concentrated in the protective
and inter-chamber pillars and the underworked sylvinite layer. Study of rock massifs stability, the stress-
strain state of which was once disturbed by mining operations, must be done before the design excava-
tion technology the leftover reserves and cavities protection methods. At the same time, the choice/con-
struction of criteria, according to which the rock massif comes to the ultimate state, is one of the urgent
problems for repeatedly undermined rock massifs.

The stability and strength calculations of the surrounding rock massifs in the vicinity of under-
ground workings are largely determined by the selected ultimate (limit) criteria. In turn, the acceptance
of a certain criterion as an estimate of the ultimate (critical) rocks state must be reasonable and based on
the regularities and features of the physical process being considered. Previously, no such studies were
carried out at the Starobin deposit. The influence of structural heterogeneities on the repeatedly under-
mined potash rock massifs strength was also insufficiently studied. At the same time, many problems
were investigated conceptually in a lot of works devoted to geomechanical modeling of rock ultimate
states in a vicinity of mine cavities, laws of deformation processes and rocks fracture [1-10]. However,
the problem of selecting the ultimate state criteria and strength characteristics of the rock massifs being
undermined repeatedly was not solved as applied to the conditions of the Starobin deposit. In addition,
reliable experimental data for the considered class of problems (stability of underground structures in
repeatedly mined rock massifs) is also still insufficient.

The purpose of this study is to develop methodological approaches to the selection of ultimate state
criteria and strength characteristics of the rock massifs being undermined repeatedly, as applied to the
Starobin deposit conditions.

Results and discussion. Ultimate state criteria for the repeatedly undermined rock massifs.
Under limiting state of rock massif we mean such a state when there are zones of significant rock failure,
fracturing, displacements on sliding lines and other disturbances of continuity in the considered rock
massif area. The ultimate state criterion must have a clear physical meaning. Out of a large number of fac-
tors directly or indirectly influencing the deformation process regularities and strength values of rock for-
mations, it is very important to select those, which are determinative for the processes being considered.
Therefore, in terms of practical use, the strength and fracture criterion should be expressed by an equa-
tion with a minimum number of material constants determined, in turn, from the simplest experiments.

The limit (extreme) equilibrium equation for the principal stress components (G, G, 03) is generally
written as follows:

y(o1, 62, 63) = 0. M

The ultimate state and destruction of geomaterials and rock massifs can follow different scenarios,
depending on a large number of factors. Consequently, there is a rather wide range of explicit represen-
tations of the ultimate state equations (1).
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The feature of the underground structures behavior is the fact that the ultimate equilibrium of rock
massifs does not yet mean complete loss of the bearing capacity of an underground structure. Therefore,
to describe the strength and stability of rock massifs, only the “limit relations” between the principal
stresses are not sufficient [11, 12]. The “limit relations” must be supplemented by an indication of the
ultimate (critical) deformations (strains or displacements) at which the bearing capacity of the object will
be exhausted. The critical deformations provide information about the deformation process, especially
at the stage of the “descending deformation curve” [13]. The bearing capacity of rock massifs depends
significantly on the “extreme” deformed state. Consequently, ultimate stress state testing is insufficient
to estimate the bearing capacity of many geomechanics objects. The rock massifs deformations (includ-
ing residual deformation) depend significantly on the loading or deformation history. Therefore, for as-
sessment of rock massifs destruction, the deformed state type should be taken into account. In this case,
the critical deformations are one of the physically correct criteria for object destruction.

Thus, to describe the rocks behavior beyond the strength it is necessary to use the strength deforma-
tion theory. In accordance with this, we modify equations (1) of limit equilibrium taking into account
massif strains on “descending branch of deformation curve” as follows:

W(Gla O3, 03, €1, €2, 63) = 05 (2)

where e, e,, e3— are the principal strains.

Due to the formation of a complex stress state in the undermined rock massif, where generalized
compression, tension and shear areas exist simultaneously, it is obvious that a complex criterion must be
used to study the ultimate (critical) rock massifs state. The determining of such complex criterion can be
done using two approaches.

First approach. Selection of several criteria assessing the limit massif state by the certain types of
the massif stress-strain state. In the frame of first approach in our modeling studies, we had used the
following ultimate criteria to investigate the undermined rock massif state with underground workings.

Criterion of maximum normal stresses, which in terms of principal stresses can be written in the
following form:

©)

G5 <0

G > Olimext> O1 > O;
o5 <0.

impress

In (3) it is considered that 6, 2 6, 2 O3} Ojiy ey 1S Ultimate tensile stress (positive value); Ojip press 18
the ultimate compressive stress (negative value), where the ultimate compressive value may be the yield
stress or the allowable stress. The ultimate values in (3) can be taken as strength for uniaxial, biaxial or
volumetric stress states. The ultimate value for the uniaxial stress state is most often used.

Criterion of maximum linear strains. According to this criterion, the massif strength is effected if
the greatest absolute value of the relative linear deformation exceeds some extreme value, independent
of the type of stress state. A mathematical formulation of this criterion is as follows:

in terms of the deformed state:

— el .
_ €max = €1 Z €limext>
F(g),85)=

€

@

el

in = €3 < €lim press ®

m
where slellm ot 1S ultimate strain on tension, it corresponds to the point of the elasticity limit (positive

value); sﬁlm press 18 ultimate strain on compression, it corresponds to the point the elasticity limit (nega-
tive value);
in terms of the stress state:

el .
8maxE =61~ V(GZ +03 ) 2 Glimext >
F(61562963): E= < el (5)
E€minl =03 — V(Gl +0,; ) = Olim press

where Gleilm ot 15 the ultimate tensile stress (positive value); csfilm press 18 the ultimate compressive stress
(negative value).
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The use of the maximum linear strains criterion in the form (5) is preferable in practice. Firstly,
during the deformation processes development over time, the calculated stresses are the true stresses.
Secondly, the stress extreme values are easier to determine empirically than the strain extreme values.

The maximum shearing stress criterion. The limit state condition according to the maximum shear-
ing stress criterion, written out in terms of principal stresses, is as follows:

O} =03 2 Ofimexts

6)

61— 03 2 ‘O-lim press

It should be noted that there are quite a lot of modifications of the criterion (6) [13].
The Coulomb—Mohr criterion. The Coulomb—Mohr limit condition can be written out as follows:

max(|’cn|—(0ntg (p+C)):O, (7

where 7, and o, are respectively the tangential and normal stress at the site with the normal line #; @ is
the internal friction angle (respectively tgo is internal friction coefficient); C is bonding strength.

It is important that the Coulomb—Mohr condition can be used as a boundary condition in the areas of
significant horizontal layer dispacements. In addition, even if condition (7) is acceptable for irreversible
deformation zones, it can also be used for elastic zones if the contact displacements in them are suffi-
ciently large.

It is also possible to use the expression of equation (7) in principal stresses:

c,— (27» + 1) 03 = Opresss ®)

where o7 and o3 are the maximum and minimum principal normal stresses respectively (taking into ac-
count the sign), A = sin@/(1 — sinQ), Gy 18 the ultimate strength of rocks in uniaxial compression.

The peculiarity of strength criterion (8) is that it takes into account both shear failure and tearing
failure.

Second approach. Construction of a combined strength theory. When we were comparing the re-
sults of theoretical calculations with experimental data it was noticed that for each hypothesis there is
an area of stressed states, in which theory is in the best agreement with experience. Therefore, it seems
reasonable to construct a combined ultimate state criterion, which includes several criteria.

For materials in which the ultimate tensile and compressive stresses differ significantly, it is promis-
ing to use a combined criterion of the form [11]:

c; +0O
1 3 .
o) 2 Climext>— 5 >0;
F(01’03): c +0c c c ©
O] — 03 ~, _limext limpress O] + O3 __ PlimextVlimpress G| + 03 <0
= X .

9

2 2 2

Slimext ~ Olimpress Olimext ~ Olim press

The physical meaning of (9) can be formulated as follows: material strength breaching occurs either
when shearing stresses reach some critical value, depending on the normal stresses acting along the
same sliding planes, or when the maximum normal stress o; reaches the limit value for the material
(tensile stress).

The use of the combined Davidenkov—Friedman strength criterion seems promising [14]. This cri-
terion is based on the principle that the nature of material failure depends not only on its physical and
mechanical properties and external operating conditions, but also on the stress-strain state scheme. It is
taken into account that, depending on the nature of the stressed state, the material can fail both, from
normal stresses and from tangential stresses. Thus, the Davidenkov—Friedman strength theory combines
two classical strength theories: maximum tangential stresses and maximum relative elongations, which
are important for geomaterials.

It is easy to present this theory graphically in the form of a well-known mechanical state diagram,
in which the basic properties of the material are reflected (Figure). The flow curve, independent of the
stress state type, is placed in the right part of the diagram, and the yield and fracture ultimate states
are represented in the left part by straight lines parallel to the coordinate axes of the system Tyax — Gegy-
Here G.qy is an equivalent stress, determined according to the theory of maximum relative elongations
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(corresponding to the greatest linear positive strain). A ray starting from the coordinate origin corre-
sponds to each stress state. Depending on which limit curve this ray crosses the type of failure (by tear-
ing or by shear) and hence the strength theory is determined.

Tmax 2 3 Tmax
Tsrez Q —————————————————————————
/
/
’ 0O
/ Pid
/ Ve
/ / 1 . P
/
-’
T, / o e —————— —_——— _
‘ESTBZ
D)
T
o cseqv Ymax

otr

Material mechanical state diagram: / — beginning of yield strength, 2 — shear failure, 3 — tearing failure

The mechanical state diagram is based on the stresses limit values Gy, Tgrez> T, Which are assumed to
be constant for the material and independent of the stress-strain state schemes. The object condition can
be evaluated according to the mechanical state diagram (see Figure), representing the stress state in the
diagram as a point with coordinates (tmax = (01 — 63)/2, Geqy = G1 — V(G2 + G3)).

The mechanical meaning of the theory is well explained by the example of a simple loading. If
a line is drawn through the origin and a given point, it is possible to predict which type of failure will
correspond to the stress state being analyzed (see Figure). Thus, for line “2” there is a material failure
by shear; for line “1” — a failure by tearing, which occurs after the plastic deformations development; for
line “3” — a failure by tearing without development of plastic deformations.

According to the combined strength theory, the main characteristic of the stress state determining
the nature of the failure can be the value o, which is equal to the following ratio:

Tmax G =03

Ceq 2[01 -v(o, +03 )]
The parameter a characterizes the type of the stressed state. For example, if a = v/2, then the straight
line in the deformation diagram corresponds to the compression; if o = 1/(1 + v) — to torsion; and in case
a =1/2 — to extension. We should note that instead of the parameter a, it seems promising to take the
Nadai—Lode coefficient, which characterizes the type of the stress state.
In addition to the parameter o, we introduce a parameter [ to evaluate material properties:

B = Tsrez/Ootr- (11)

If B < 1, the material will most often fail by shearing; if f < 1, the material will generally fail by
tearing; if B = 1, the material failure nature depends largely on the type of the stress state.

According to the introduced parameters, the destruction nature is determined both by the stress state
(coefficient a) and by the nature of the material (parameter ). Namely, at o < 3 tearing takes place and
at a. > 3 we obtain shearing.

Before destruction, the behavior of the material is determined by the ratio of the coefficient o and
the parameter n = 1, /oy If 1 > 0, the material fails without developing plastic deformations, i.e. be-
comes brittle; if 1 < a, then the failure is preceded by the appearance of plastic deformations.

o=

(10)
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As noted earlier, the ultimate state of rock massifs according to the criteria including only compo-
nents of the stress state does not yet mean a complete loss of bearing capacity of the underground struc-
tures. Therefore, the “limit relations” should be supplemented by an indication of the ultimate defor-
mations values. In other words, the “deformation history” of the investigated rock massif area must be
taken into account, i.e. the complete deformation diagram must be considered. Therefore, deformation
theory of strength must be used to describe the rocks behavior beyond their extreme values.

Thus, at the stage of deformation up to the “critical point” (strength) the massif strength is consid-
ered according to a set of the described criteria. At the “beyond stage of deformation” equation (2) is
written in the form corresponding to the deformation strength criterion, e.g. [8, 9]:

oy =(2h+1)03 + 0, — E'e|. (12)

press

Here o is the value of the principal stress o, at the beyond the limit branch of the deformation diagram
(at points on the descending part of the curve (o) — e))); ¢ is the value of principal strains increment e,
at the beyond the limit stage of deformation; £" is deformation module of the descending part of the full
diagram curve; A = sing/(1 — sing).

The considered approaches are based on the assumption that the ultimate strength state is practically
independent of principal stress o,. The value of o, determines the type of volumetric (3-Dimension)
stress state. This fact can be clearly seen from the value of the Nadai—Lode parameter i, which charac-
terizes the generalized stress state in the rock massif:

u =2927017% oo
O1 — O3

Let us remind that for the principal stress components G}, 6,, and &3 the inequality 6 > ¢, > o3 is
fulfilled. Compressive stresses are taken as standard with a minus sign. The maximum compressive load
applies along the vertical axis, therefore this axis is numbered “3” and the maximum compressive stress
along this axis is indicated as o3.

The Nadai—Lode parameter varies from “—1” to “1” and characterizes the type of volumetric stress
state: if p,; € [-1; —0.5] — corresponds to a generalized tensile state; if p; € [-0.5; +0.5] — corresponds to
a generalized shift state; if p,; € [0.5; 1] — corresponds to a generalized compression state.

Today, there are quite a lot of recommendations for taking into account the value of the average
principal stress c,. Thus, according to A. Nadai, instead of the ultimate state criterion in the form of
the classical Coulomb—Mohr condition 1, = f(G,), the condition for octahedral stresses should be writ-
ten down:

Tokt :f (Gokt)- (13)

Since the expressions for octahedral stresses include the value o,, the limit condition (13) depends
on the stress c,. The expressions for the octahedral stresses are

1 1 2 2 2
okt =501 10, +03), Toe =% 1~ 02 2~ 03 3—0y) .
Ot 3(61 G, +63), To _3\/(6 6,) +(o,—03) +(o3-0))

The limit condition proposed by Professor A.I. Botkin, written out in terms of principal stresses,
is [1]:

_ 2\/Ecjpresscp \/5 (Gpress B GP )

2 2 2
\/ _ _ o P = . (14
(61-0,) +(0y-03) +(o3—0y) P + —— (0, +0, +03) (14)

Comparing the equations (14) with the classical Coulomb—Mohr condition in the form (8), one can
see that this limit condition extends the Coulomb—Mohr condition with respect to the 3D stress state.
For the 3D stress state, a generalized strength criterion can be proposed, which takes into account
the material destruction as a result of both shearing and separation/gap:
Cax_ | 2 2 2 Oou | 22
2——|:((51—62) +(0y—03) +(03-0y) }+ 1-—=- o] <o (15)

ext*
cspress cSpress
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In the case if Gexi/Opress ~ 0 (i.€. for ideally brittle materials), expression (15) is converted into the
corresponding equation of the theory of maximum normal stresses.

Strength characteristics of the undermined repeatedly rock massifs. To estimate the rocks
strength in the massif according to the known rock samples strength taken from core, the most common
method is the use of a structural weakening coefficient ;. It should be noted that the effect of structural
heterogeneities on the massif strength is still poorly studied. Difficulties of the transition from sample
strength to massif strength arises from the fact that the structural weakening coefficient p; depends on
a number of factors. The determination of L, coefficients numerical values is carried out mainly by ex-
perimental methods, although approaches based on mathematical modelling are increasingly being used.

For the problem of the underground structures stability evaluation in an undermined repeatedly
massif, one of the most important factors affecting the massif strength is the occurrence of fractures and
slip lines due to primary excavation. Therefore, the structural weakening coefficient p; can be a func-
tion of the relation between the bonding at the contacts of the weakenings in the undermined massif
and the bonding in the undisturbed rock massif. In the absence of reliable representative experimental
data, the value of this coefficient can be assumed to be in the range of 0.01-0.02 for a wide range of rock
massifs [15]. Such value of the coefficient p; indicates that the occurrence of slip and fracture lines in an
undermined massif significantly affects the shear strength characteristics of a rock massif. Obviously,
a reliable quantitative evaluation of the influence factors requires labour-intensive multiple in-situ tests.

The change in massifs strength due to mining workings can be performed by introducing a dis-
crete series of coefficients, depending on the irregularities present in the considered volume of the rock
massif. For example, an effective way to account for the presence of low thickness clay interlayers is to
introduce attenuation coefficients into the strength characteristics of the massifs, which is actively used
in mining practice at the Starobin potash salt deposit.

An approach based on empirical dependencies of the form

U = NuNe/Ma (16)

can also be used to estimate the coefficient u,. Here n,, is the strength reduction factor which depends
on the ratio of the cavity size to the size " of the elementary block; N, and 1, take into account the rock
strength reduction due to the spatial arrangement of the weakening planes in the elements of the under-
ground structure (cavity walls and roofs).

Expression (16) can be supplemented by introduction of additional coefficients. For example, it is
possible to take into account the reduction of the massif strength over time by means of the coefficient
1, Structure of strength functional dependence on time factor can be as follows (based on the results of
laboratory tests):

N = N + (1 = Mo)exp(—ou). 17)

Here 1., is a parameter characterizing long-term strength; o is a parameter characterizing rate of strength
reduction over time. In most cases it is correct to assume o = 0.02 in the absence of experimental data (if
time ¢ is measured in days).

Taking into account the marked attenuation coefficients, the Coulomb—Mohr strength condition can
be represented, for example, as [6]:

T, — O, — sinQ[t, + c, + 2M(k,) — k; ctgp] = 0, (18)

where k; = k-m,"ns; k and ctge are respectively, as before, bonding and coefficient of internal friction;
F(k,) is a function describing the change in the bonding coefficient as a function of 1, and n,.

The ratio (18) can also be supplemented by the introducing a coefficient that takes into account the
dynamic loading of the rock massif. Let 6,y g 1S the fatigue rock strength under dynamic loading, and
G5t and o, ¢ are the compressive and tensile strengths of the rock under static loading, respectively.
The stress relation kg = Omax.a/ Oc.si(h.sy) 1S called the dynamic loading coefficient. In the article [16] it is
shown that an approximate value of the dynamic loading coefficient for rocks can be calculated using
the formulas: k4, =1.71-0.2881g N for compression and k4, =1.24 -0.2401g N for tension. Here N is
the number of load cycles.
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One of the main consequences of the rock massif technological disturbance is a change in the rocks
bonding coefficient. Therefore, the bonding coefficient can be represented as a distance function to
the area of technological disturbance. In accordance with this hypothesis, it is necessary to introduce
a strength reduction function into the strength condition, which takes into account the degree of the
rocks deformation. Studies carried out by various authors, based on the processing of experimental data,
have established that this dependence is highly nonlinear and can be assumed to be exponential [13].

At the limit of information about the extreme rock deformation, the degree of fragmentation can be
taken as a destruction measure. Then the effect of rock strata technological heterogeneity on its strength
properties can be taken into account by the degree of fragmentation K,,. The following law of change
with distance from the technological disturbance (cavity contour) can be adopted for the degree of frag-
mentation K,

H
F(Kp)zexp[—ock (Kp -k, )J
Here K;I is the initial degree of rock fragmentation at the strength (determined experimentally); oy is

a parameter which values vary between 15 and 25. The specific value of oy, is determined from the con-
dition that at K, —>KE the function is (K ,)— 0. In turn, here K? is the ultimate degree of fragmenta-

tion. The value Kg is within a rather tight range from 1.1 to 1.3, with the lower value being typical for
harder rocks. This value is also determined experimentally, but due to its small deviation from the one, it

can be assumed with a safety factor that K ;l =1
If the degree of fragmentation is taken as a measure of strength loss, then the two extremes of the
strength reduction function can be assumed to be equal:

C(p)=C-Gi/p", (19)

where C is the rocks bonding in the undisturbed massif, p = R/R, R is the radial coordinate, R is the
cavity equivalent radius, C), n are experimentally determined parameters.

Dependence (19) shows that the bonding function takes maximum value only at infinity (at p — o).

From physical aspects, it seems more correct to consider that the bonding coefficient, depending on
the current radius, increases from its minimum value Cj at the cavity contour to its maximum value C|
at the boundary separating the elastic region from the inelastic area. Due to this fact, when studying the
mechanical processes in the vicinity of underground cavity, it is convenient to represent the variable
coefficient C(p) in the form:

(C1=Cy)f(p)+Cos if 1<p<py

20
C, if p>p, @0)

C(p)= {
Here C is a bonding in the undisturbed massif, f(p) is a loss of strength function reflecting the hetero-
geneity nature of the rock massif properties when we are moving from the cavity contour deep into the
rock massif.
The function f{p) can be presented as follows:

f(p)—i(l—in} f(p){p"‘lJm; £(p)=logy, 0t ()

po—10 p po —1

In these expressions, p = /Ry is the dimensionless current radius, 7 is the dimensional radial coordinate,
Ry is the cavity radius, p = r(/R, is dimensionless external radius of the zone of non-elastic strains.

Thus, change of rock strength characteristics in the vicinity of the specific cavity when we are mov-
ing from the cavity contour can be described by dependence (20) and by a function (21). Accounting for
several cavities placed arbitrarily in the rock massif can be performed using R-functions according to
the method described in the [12].

Conclusion. Methodological approaches to the selection of ultimate state criteria and strength char-
acteristics of the repeatedly undermined rock massifs were developed. These approaches were designed
to provide parametric support to the geomechanical modelling of the massif stress-strain state and the
mining systems of the Starobin potash deposit’s mine fields planned for the additional mining of the
mineral reserves left.

P -1
Tl

, etc. 21
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It was determined that due to formation of complex stress state in the undermined rock massif,
where the areas of generalized compression, tension and shear simultaneously present, it is necessary to
use complex criterion to study the ultimate state of the massif. Determination of such criterion can be
carried out using several approaches. The first approach is to select some criteria that evaluate the massif
ultimate state by certain types of its stress-strain state: the criterion of the maximum normal stresses (3),
the criterion of the maximum linear strains (5), the criterion of the maximum shearing stress (6) and the
Coulomb—Mohr criterion (8). The second approach is to construct a combined limit state criterion (9) for
materials whose ultimate tensile and compressive stresses differ significantly. In this case, the parameter
o (10) characterizing the type of stress state and the parameter B (11) characterizing the properties of
the material are introduced, which together determine the character of failure — tear or shear. Thus, at
the stage of deformation up to the “critical point” (ultimate strength), the strength of the massif should
be considered by a set of the criteria described above, including stress-strain components. At the same
time, in order to describe the behavior of rocks beyond the limit of strength (beyond stage of deforma-
tion) it is necessary to apply deformation theory of strength using the developed equation of the defor-
mation strength criterion (12).

When calculating the strength characteristics of the repeatedly undermined rock massif, it is rec-
ommended to use a structural attenuation coefficient as the product of several factors (16), (17), taking
into account different types of disturbance of the primary undermined massif and the time factor. The
Coulomb—Mohr strength condition (with regard to the composite coefficient of structural attenuation) is
recommended to use in the proposed form (18). The change of the rock’s bonding coefficient is repre-
sented as a distance function to the area of technological disturbance as one of the main consequences of
technological disturbance of the rock massif. It is shown that, taking into account the degree of fragmen-
tation, the change in the strength characteristics of rocks in the undermined massif can be described by
the proposed dependence (20) and the function (21).
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