525 research outputs found

    Small-worlds: How and why

    Full text link
    We investigate small-world networks from the point of view of their origin. While the characteristics of small-world networks are now fairly well understood, there is as yet no work on what drives the emergence of such a network architecture. In situations such as neural or transportation networks, where a physical distance between the nodes of the network exists, we study whether the small-world topology arises as a consequence of a tradeoff between maximal connectivity and minimal wiring. Using simulated annealing, we study the properties of a randomly rewired network as the relative tradeoff between wiring and connectivity is varied. When the network seeks to minimize wiring, a regular graph results. At the other extreme, when connectivity is maximized, a near random network is obtained. In the intermediate regime, a small-world network is formed. However, unlike the model of Watts and Strogatz (Nature {\bf 393}, 440 (1998)), we find an alternate route to small-world behaviour through the formation of hubs, small clusters where one vertex is connected to a large number of neighbours.Comment: 20 pages, latex, 9 figure

    Study of Gamma-ray Induced Attenuation of Fluorine-doped Single-mode Radiation Hard Optic Fiber

    Get PDF
    The paper presents the measurements results of optic fiber’s radiation induced attenuation. The approach of optic fiber’s radiation test at negative temperatures is introduced. The results of an investigation of the decay of an optical signal during a pulsed electron. Keywords: radiation hardness, fiber-optic communication, radiation-induced attenuatio

    Performance of networks of artificial neurons: The role of clustering

    Full text link
    The performance of the Hopfield neural network model is numerically studied on various complex networks, such as the Watts-Strogatz network, the Barab{\'a}si-Albert network, and the neuronal network of the C. elegans. Through the use of a systematic way of controlling the clustering coefficient, with the degree of each neuron kept unchanged, we find that the networks with the lower clustering exhibit much better performance. The results are discussed in the practical viewpoint of application, and the biological implications are also suggested.Comment: 4 pages, to appear in PRE as Rapid Com

    Is there an integrative center in the vertebrate brain-stem? A robotic evaluation of a model of the reticular formation viewed as an action selection device

    Get PDF
    Neurobehavioral data from intact, decerebrate, and neonatal rats, suggests that the reticular formation provides a brainstem substrate for action selection in the vertebrate central nervous system. In this article, Kilmer, McCulloch and Blum’s (1969, 1997) landmark reticular formation model is described and re-evaluated, both in simulation and, for the first time, as a mobile robot controller. Particular model configurations are found to provide effective action selection mechanisms in a robot survival task using either simulated or physical robots. The model’s competence is dependent on the organization of afferents from model sensory systems, and a genetic algorithm search identified a class of afferent configurations which have long survival times. The results support our proposal that the reticular formation evolved to provide effective arbitration between innate behaviors and, with the forebrain basal ganglia, may constitute the integrative, ’centrencephalic’ core of vertebrate brain architecture. Additionally, the results demonstrate that the Kilmer et al. model provides an alternative form of robot controller to those usually considered in the adaptive behavior literature

    Clustering and Synchronization of Oscillator Networks

    Full text link
    Using a recently described technique for manipulating the clustering coefficient of a network without changing its degree distribution, we examine the effect of clustering on the synchronization of phase oscillators on networks with Poisson and scale-free degree distributions. For both types of network, increased clustering hinders global synchronization as the network splits into dynamical clusters that oscillate at different frequencies. Surprisingly, in scale-free networks, clustering promotes the synchronization of the most connected nodes (hubs) even though it inhibits global synchronization. As a result, scale-free networks show an additional, advanced transition instead of a single synchronization threshold. This cluster-enhanced synchronization of hubs may be relevant to the brain with its scale-free and highly clustered structure.Comment: Submitted to Phys. Rev.

    Comparative Study of foF2 Measurements with IRI-2007 Model Predictions During Extended Solar Minimum

    Get PDF
    The unusually deep and extended solar minimum of cycle 2324 made it very difficult to predict the solar indices 1 or 2 years into the future. Most of the predictions were proven wrong by the actual observed indices. IRI gets its solar, magnetic, and ionospheric indices from an indices file that is updated twice a year. In recent years, due to the unusual solar minimum, predictions had to be corrected downward with every new indices update. In this paper we analyse how much the uncertainties in the predictability of solar activity indices affect the IRI outcome and how the IRI values calculated with predicted and observed indices compared to the actual measurements.Monthly median values of F2 layer critical frequency (foF2) derived from the ionosonde measurements at the mid-latitude ionospheric station Juliusruh were compared with the International Reference Ionosphere (IRI-2007) model predictions. The analysis found that IRIprovides reliable results that compare well with actual measurements, when the definite (observed and adjusted) indices of solar activityare used, while IRI values based on earlier predictions of these indices noticeably overestimated the measurements during the solar minimum.One of the principal objectives of this paper is to direct attention of IRI users to update their solar activity indices files regularly.Use of an older index file can lead to serious IRI overestimations of F-region electron density during the recent extended solar minimum

    Experimental evidence for the preservation of U-Pb isotope ratios in mantle-recycled crustal zircon grains

    Get PDF
    Zircon of crustal origin found in mantle-derived rocks is of great interest because of the information it may provide about crust recycling and mantle dynamics. Consideration of this requires understanding of how mantle temperatures, notably higher than zircon crystallization temperatures, affected the recycled zircon grains, particularly their isotopic clocks. Since Pb2+ diffuses faster than U4+ and Th+4, it is generally believed that recycled zircon grains lose all radiogenic Pb after a few million years, thus limiting the time range over which they can be detected. Nonetheless, this might not be the case for zircon included in mantle minerals with low Pb2+ diffusivity and partitioning such as olivine and orthopyroxene because these may act as zircon sealants. Annealing experiments with natural zircon embedded in cristobalite (an effective zircon sealant) show that zircon grains do not lose Pb to their surroundings, although they may lose some Pb to molten inclusions. Diffusion tends to homogenize the Pb concentration in each grain changing the U-Pb and Th-Pb isotope ratios proportionally to the initial 206Pb, 207Pb and 208Pb concentration gradients (no gradient-no change) but in most cases the original age is still recognizable. It seems, therefore, that recycled crustal zircon grains can be detected, and even accurately dated, no matter how long they have dwelled in the mantle.This paper has been financed by the Spanish Grants CGL2013-40785-P and CGL2017-84469-P

    In Defence of Modest Doxasticism About Delusions

    Get PDF
    Here I reply to the main points raised by the commentators on the arguments put forward in my Delusions and Other Irrational Beliefs (OUP, 2009). My response is aimed at defending a modest doxastic account of clinical delusions, and is articulated in three sections. First, I consider the view that delusions are in-between perceptual and doxastic states, defended by Jacob Hohwy and Vivek Rajan, and the view that delusions are failed attempts at believing or not-quite-beliefs, proposed by Eric Schwitzgebel and Maura Tumulty. Then, I address the relationship between the doxastic account of delusions and the role, nature, and prospects of folk psychology, which is discussed by Dominic Murphy, Keith Frankish, and Maura Tumulty in their contributions. In the final remarks, I turn to the continuity thesis and suggest that, although there are important differences between clinical delusions and non-pathological beliefs, these differences cannot be characterised satisfactorily in epistemic terms. \u

    Explaining Evidence Denial as Motivated Pragmatically Rational Epistemic Irrationality

    Get PDF
    This paper introduces a model for evidence denial that explains this behavior as a manifestation of rationality and it is based on the contention that social values (measurable as utilities) often underwrite these sorts of responses. Moreover, it is contended that the value associated with group membership in particular can override epistemic reason when the expected utility of a belief or belief system is great. However, it is also true that it appears to be the case that it is still possible for such unreasonable believers to reverse this sort of dogmatism and to change their beliefs in a way that is epistemically rational. The conjecture made here is that we should expect this to happen only when the expected utility of the beliefs in question dips below a threshold where the utility value of continued dogmatism and the associated group membership is no longer sufficient to motivate defusing the counter-evidence that tells against such epistemically irrational beliefs
    corecore