2,515 research outputs found

    A Speech Recognizer based on Multiclass SVMs with HMM-Guided Segmentation

    Get PDF
    Automatic Speech Recognition (ASR) is essentially a problem of pattern classification, however, the time dimension of the speech signal has prevented to pose ASR as a simple static classification problem. Support Vector Machine (SVM) classifiers could provide an appropriate solution, since they are very well adapted to high-dimensional classification problems. Nevertheless, the use of SVMs for ASR is by no means straightforward, mainly because SVM classifiers require an input of fixed-dimension. In this paper we study the use of a HMM-based segmentation as a mean to get the fixed-dimension input vectors required by SVMs, in a problem of isolated-digit recognition. Different configurations for all the parameters involved have been tested. Also, we deal with the problem of multi-class classification (as SVMs are initially binary classifers), studying two of the most popular approaches: 1-vs-all and 1-vs-1

    Polaritons in layered two-dimensional materials

    Get PDF
    In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides, reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near-field optical microscopy. Here, we review recent progress in state-of-the-art experiments, and survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures of merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.T.L. acknowledges financial support by DARPA grant award FA8650-16-2-7640. A.C. acknowledges support by CNPq, through the PRONEX/FUNCAP and Science Without Borders programs. J.D.C. acknowledges financial support from the Office of Naval Research that was administered by the NRL Nanoscience Institute. A.K. and N.X.F. acknowledge the financial support by AFOSR MURI (Award No. FA9550-12-1-0488). L.M.M. acknowledges the Spanish Ministry of Economy and Competitiveness under project MAT2014-53432-C5-1-R. F.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, the European Union H2020 Programme under grant agreement no 604391 Graphene Flagship’, the ERC starting grant (307806, CarbonLight), and project GRASP (FP7-ICT-2013-613024-GRASP).Peer Reviewe

    Brucella abortus Uses a Stealthy Strategy to Avoid Activation of the Innate Immune System during the Onset of Infection

    Get PDF
    To unravel the strategy by which Brucella abortus establishes chronic infections, we explored its early interaction with innate immunity. Methodology/Principal Findings Brucella did not induce proinflammatory responses as demonstrated by the absence of leukocyte recruitment, humoral or cellular blood changes in mice. Brucella hampered neutrophil (PMN) function and PMN depletion did not influence the course of infection. Brucella barely induced proinflammatory cytokines and consumed complement, and was strongly resistant to bactericidal peptides, PMN extracts and serum. Brucella LPS (BrLPS), NH-polysaccharides, cyclic glucans, outer membrane fragments or disrupted bacterial cells displayed low biological activity in mice and cells. The lack of proinflammatory responses was not due to conspicuous inhibitory mechanisms mediated by the invading Brucella or its products. When activated 24 h post-infection macrophages did not kill Brucella, indicating that the replication niche was not fusiogenic with lysosomes. Brucella intracellular replication did not interrupt the cell cycle or caused cytotoxicity in WT, TLR4 and TLR2 knockout cells. TNF-α-induction was TLR4- and TLR2-dependent for live but not for killed B. abortus. However, intracellular replication in TLR4, TLR2 and TLR4/2 knockout cells was not altered and the infection course and anti-Brucella immunity development upon BrLPS injection was unaffected in TLR4 mutant mice. Conclusion/Significance We propose that Brucella has developed a stealth strategy through PAMPs reduction, modification and hiding, ensuring by this manner low stimulatory activity and toxicity for cells. This strategy allows Brucella to reach its replication niche before activation of antimicrobial mechanisms by adaptive immunity. This model is consistent with clinical profiles observed in humans and natural hosts at the onset of infection and could be valid for those intracellular pathogens phylogenetically related to Brucella that also cause long lasting infections

    The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition

    Get PDF
    Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines
    corecore