12,887 research outputs found

    Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Get PDF
    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction

    On the principal bifurcation branch of a third order nonlinear long-wave equation

    Full text link
    We study the principal bifurcation curve of a third order equation which describes the nonlinear evolution of several systems with a long--wavelength instability. We show that the main bifurcation branch can be derived from a variational principle. This allows to obtain a close estimate of the complete branch. In particular, when the bifurcation is subcritical, the large amplitude stable branch can be found in a simple manner.Comment: 11 pages, 3 figure

    The infrared compactness-temperature relation for quiescent and starburst galaxies

    Get PDF
    IRAS observations show the existence of a correlation between the infrared luminosity Lir and dust temperature Td in star-forming galaxies, in which larger Lir leads to higher dust temperature. The Lir-Td relation is commonly seen as reflecting the increase in dust temperature in galaxies with higher star formation rate. Even though the correlation shows a significant amount of dispersion, a unique relation has been commonly used to construct spectral energy distributions of galaxies in distant universe studies, such as source number counting or photometric redshift determination. In this work, we introduce a new parameter, namely the size of the star-forming region Rir and lay out the empirical and modelled relation between the global parameters Lir, Td and Rir of IR-bright non-AGN galaxies. IRAS 60-to-100um color is used as a proxy for the dust temperature and the 1.4GHz radio contiuum emission for the infrared spatial distribution. The analysis has been carried out on two samples. The first one is made of the galaxies from the 60um flux-limited IRAS Revised Bright Galaxy Samples which have a reliable RC size estimate from the VLA follow-ups of the IRAS Bright Galaxy Samples. The second is made of the sources from the 170um ISOPHOT Serendipity Sky Survey which are resolved by the NVSS or FIRST surveys. We show that the dispersion in the Lir-Td diagram can be reduced to a relation between the infrared surface brightness and the dust temperature, a relation that spans 5 orders of magnitude in surface brightness. We explored the physical processes giving rise to the Sir-Td relation, and show that it can be derived from the Schmidt law, which relates the star formation rate to the gas surface density.Comment: 13 pages, 7 figures, accepted for publication in A&

    Mid-Infrared Spectroscopy of Optically Faint Extragalactic 70 micron Sources

    Full text link
    We present mid-infrared spectra of sixteen optically faint sources with 70 micron fluxes in the range 19-38mJy. The sample spans a redshift range of 0.35<z<1.9, with most lying between 0.8<z<1.6, and has infrared luminosities of 10^{12} - 10^{13} solar luminosities. Ten of 16 objects show prominent polycyclic aromatic hydrocarbon (PAH) emission features; four of 16 show weak PAHs and strong silicate absorption, and two objects have no discernable spectral features. Compared to samples with 24 micron fluxes >10mJy, the 70\um sample has steeper IR continua and higher luminosities. The PAH dominated sources are among the brightest starbursts seen at any redshift, and reside in a redshift range where other selection methods turn up relatively few sources. The absorbed sources are at higher redshifts and have higher luminosities than the PAH dominated sources, and may show weaker luminosity evolution. We conclude that a 70 micron selection extending to ~20mJy, in combination with selections at mid-IR and far-IR wavelengths, is necessary to obtain a complete picture of the evolution of IR-luminous galaxies over 0<z<2.Comment: ApJ accepte

    Crossing the `Yellow Void' -- Spatially Resolved Spectroscopy of the Post- Red Supergiant IRC+10420 and Its Circumstellar Ejecta

    Full text link
    IRC +10420 is one of the extreme hypergiant stars that define the empirical upper luminosity boundary in the HR diagram. During their post--RSG evolution, these massive stars enter a temperature range (6000-9000 K) of increased dynamical instability, high mass loss, and increasing opacity, a semi--forbidden region, that de Jager and his collaborators have called the `yellow void'. We report HST/STIS spatially resolved spectroscopy of IRC +10420 and its reflection nebula with some surprising results. Long slit spectroscopy of the reflected spectrum allows us to effectively view the star from different directions. Measurements of the double--peaked Halpha emission profile show a uniform outflow of gas in a nearly spherical distribution, contrary to previous models with an equatorial disk or bipolar outflow. Based on the temperature and mass loss rate estimates that are usually quoted for this object, the wind is optically thick to the continuum at some and possibly all wavelengths. Consequently the observed variations in apparent spectral type and inferred temperature are changes in the wind and do not necessarily mean that the underlying stellar radius and interior structure are evolving on such a short timescale. To explain the evidence for simultaneous outflow and infall of material near the star, we propose a `rain' model in which blobs of gas condense in regions of lowered opacity outside the dense wind. With the apparent warming of its wind, the recent appearance of strong emission, and a decline in the mass loss rate, IRC +10420 may be about to shed its opaque wind, cross the `yellow void', and emerge as a hotter star.Comment: To appear in the Astronomical Journal, August 200

    Mapping the Galactic Halo with blue horizontal branch stars from the 2dF quasar redshift survey

    Full text link
    We use 666 blue horizontal branch (BHB) stars from the 2Qz redshift survey to map the Galactic halo in four dimensions (position, distance and velocity). We find that the halo extends to at least 100 kpc in Galactocentric distance, and obeys a single power-law density profile of index ~-2.5 in two different directions separated by 150 degrees on the sky. This suggests that the halo is spherical. Our map shows no large kinematically coherent structures (streams, clouds or plumes) and appears homogeneous. However, we find that at least 20% of the stars in the halo reside in substructures and that these substructures are dynamically young. The velocity dispersion profile of the halo appears to increase towards large radii while the stellar velocity distribution is non Gaussian beyond 60 kpc. We argue that the outer halo consists of a multitude of low luminosity overlapping tidal streams from recently accreted objects.Comment: Accepted for publication in the Astrophysical Journal Requires emulateapj to proces

    Exploring the performance of the spectrometer prisma in heavy zirconium and xenon mass regions

    Get PDF
    We present results from two recent runs which illustrate the performance of the PRISMA spectrometer in the proximity of the upper limit of its operational interval, namely 96Zr + 124Sn at Elab = 500 MeV and 136Xe + 208Pb at Elab = 930 MeV. In the latter run, the γ array CLARA also allowed us to identify previously unknown γ transitions in the nuclides 136Cs and 134I
    corecore