891 research outputs found
Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of hightemperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, highmeltingpoint ceramicsmetallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the nonnuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A smallscale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations
Inertial Weldment of Rhenium and Inconel 718
Inertia welding has been found to be a successful method for joining pure rhenium to Inconel 718, and with additional experimentation, this process may have great potential for rocket nozzle applications. Refractory metals are ideally suited to this application, where high temperatures and oxidizing environment survivability is required, but not all of the thruster must be made of these materials, only the areas that require them. A bolted joint between the two metals is not ideal, especially for small thrusters where the mess of a bolted join will come at a steep price. A welded joint would be preferred for flight thrusters
2018 NASA Green Propulsion Technology Development Roadmap
The NASA Green Propulsion Working Group (GPWG) was tasked by the NASA Chemical Propulsion Subcapabilities Management (CPSM) with the development of this NASA Green Propulsion Technologies Development Roadmap, herein referred to as the Green Propulsion Roadmap, or simply the Roadmap, to provide guidance to NASA through the CPSM on green propulsion technology development. Other agencies or commercial partners may refer to this roadmap as well. It is envisioned that the synthesis of various Center-based activities and knowledge repositories will result in a cumulative knowledge gain, and will provide capabilities beyond the sum contribution of individual Centers. Ultimately, a well-defined roadmap of technology investment path, the enhanced coordination and alignment of activities among NASA Centers and other Federal Agencies, and a well-supported green propulsion community will facilitate the path towards the broader infusion of green propulsion technologies for science and human exploration missions, as well as a deeper understanding of the fundamental behaviors and characteristics of these systems that is on par with other historically used monopropellant propulsion systems, such as hydrazine
Development and Testing of a Novel Green Propellant Piston Tank
Analytical Mechanics Associates (AMA), in cooperation with NASA Marshall Space Flight Center's (MSFC's) Spacecraft Propulsion Systems Branch, developed and tested a novel propellant tank design that employs an internal piston pressurized with an inert gas to expel propellant to thrusters. During the course of this activity, AMA designed, oversaw fabrication, and delivered to MSFC for testing, a piston propellant tank sized for 3U or larger CubeSats. MSFC conducted liquid expulsion testing using ethylene glycol as a referee fluid to map the tank's performance at different pressures and piston positions. Following the expulsion test campaign, the tank is planned to be integrated into a propulsion system test bed for hot fire tests with a 100mN monopropellant thruster to evaluate the tank's influence on thruster performance when operated in a flight like manner. Described in this paper is a comprehensive summary of how the tanks were designed, built, and tested. The fundamental knowledge gained through the fabrication and testing of these tanks gives evidence that the piston tank design may be scalable to meet the requirements and constraints of other small satellites
Additive Manufacturing: An Enabling Technology for the MoonBEAM 6U CubeSat Missions
The Advanced Concepts Office at the NASA Marshall Space Flight Center completed a mission concept study for the Moon Burst Energetics All-sky Monitor (MoonBEAM). The goal of the concept study was to show the enabling aspects that additive manufacturing can provide to CubeSats. In addition to using the additively manufactured tanks as part of the spacecraft structure, the main propulsion system uses a green propellant, which is denser than hydrazine. Momentum unloading is achieved with electric microthrusters, eliminating much of the propellant plumbing. The science mission, requirements, and spacecraft design are described
Monitoring plant functional diversity from space
The world’s ecosystems are losing biodiversity fast. A satellite mission designed to track changes in plant functional diversity around the globe could deepen our understanding of the pace and consequences of this change and how to manage it
Assessment of Mixed-Layer Height Estimation from Single-Wavelength Ceilometer Profiles
An assessment of differing boundary/mixed-layer height measurement methods was performed with a focus on the Vaisala CL51 instrument and BLView and STRAT softwares. Of primary interest was determining how these differ- ng methodologies will intercompare when deployed as part of a larger instrument network. The intercomparisons were performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, VA and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in the Denver, CO area. It was observed that data collection methodology is not as important as the processing algorithm, and that, generally speaking, sonde-derived boundary layer heights are higher than LIDAR-derived mixed-layer heights
Climate and lawn management interact to control C4 plant distribution in residential lawns across seven U.S. cities.
Author Posting. © Ecological Society of America, 2019. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Trammell, T. L. E., Pataki, D. E., Still, C. J., Ehleringer, J. R., Avolio, M. L., Bettez, N., Cavender-Bares, J., Groffman, P. M., Grove, M., Hall, S. J., Heffernan, J., Hobbie, S. E., Larson, K. L., Morse, J. L., Neill, C., Nelson, K. C., O'Neil-Dunne, J., Pearse, W. D., Chowdhury, R. R., Steele, M., & Wheeler, M. M. Climate and lawn management interact to control C4 plant distribution in residential lawns across seven U.S. cities. Ecological Applications, 29(4), (2019): e01884, doi: 10.1002/eap.1884.In natural grasslands, C4 plant dominance increases with growing season temperatures and reflects distinct differences in plant growth rates and water use efficiencies of C3 vs. C4 photosynthetic pathways. However, in lawns, management decisions influence interactions between planted turfgrass and weed species, leading to some uncertainty about the degree of human vs. climatic controls on lawn species distributions. We measured herbaceous plant carbon isotope ratios (δ13C, index of C3/C4 relative abundance) and C4 cover in residential lawns across seven U.S. cities to determine how climate, lawn plant management, or interactions between climate and plant management influenced C4 lawn cover. We also calculated theoretical C4 carbon gain predicted by a plant physiological model as an index of expected C4 cover due to growing season climatic conditions in each city. Contrary to theoretical predictions, plant δ13C and C4 cover in urban lawns were more strongly related to mean annual temperature than to growing season temperature. Wintertime temperatures influenced the distribution of C4 lawn turf plants, contrary to natural ecosystems where growing season temperatures primarily drive C4 distributions. C4 cover in lawns was greatest in the three warmest cities, due to an interaction between climate and homeowner plant management (e.g., planting C4 turf species) in these cities. The proportion of C4 lawn species was similar to the proportion of C4 species in the regional grass flora. However, the majority of C4 species were nonnative turf grasses, and not of regional origin. While temperature was a strong control on lawn species composition across the United States, cities differed as to whether these patterns were driven by cultivated lawn grasses vs. weedy species. In some cities, biotic interactions with weedy plants appeared to dominate, while in other cities, C4 plants were predominantly imported and cultivated. Elevated CO2 and temperature in cities can influence C3/C4 competitive outcomes; however, this study provides evidence that climate and plant management dynamics influence biogeography and ecology of C3/C4 plants in lawns. Their differing water and nutrient use efficiency may have substantial impacts on carbon, water, energy, and nutrient budgets across cities.This research was funded by a series of collaborative grants from the U.S. National Science Foundation Macrosystems Biology Program (EF‐1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, 121238320). The authors thank La'Shaye Ervin, William Borrowman, Moumita Kundu, and Barbara Uhl for field and laboratory assistance
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
- …
