1,337 research outputs found

    Depoliticisation, Resilience and the Herceptin Post-code Lottery Crisis: Holding Back the Tide

    Get PDF
    This article: Covers new empirical terrain in the study of depoliticisation, with an in-depth case study of health technology regulation; Analyses depoliticisation from a novel analytical perspective, examining how depoliticised institutions are resilient to external pressure for politicisation; Posits a distinctive framework for analysing resilience, drawing on cognate literatures on policy networks and agencification; Raises interesting and distinctive questions about the nature of depoliticisation in advanced liberal democracies, arguing it is more contested than commonly acknowledged. Depoliticisation as a concept offers distinctive insights into how governments attempt to relieve political pressures in liberal democracies. Analysis has examined the effects of depoliticisation tactics on the public, but not how those tactics are sustained during moments of political tension. Drawing on policy networks and agencification literatures, this article examines how these tactics are resilient against pressure for politicisation. Using an in-depth case study of the controversial appraisal of cancer drug Herceptin in 2005/6 by the National Institute for Health and Clinical Excellence (NICE), the article examines how ‘resilient’ NICE was to external politicisation. It is argued that NICE was resilient because it was effectively ‘insulated’ by formal procedures and informal norms of deference to scientific expertise. This mechanism is termed ‘institutional double glazing’. The conclusion suggests developments to the conceptual and methodological framework of depoliticisation, and highlights theoretical insights into the nature of ‘anti-politics’ in contemporary democracies

    The Probability Distribution of Binary Pulsar Coalescence Rate Estimates. II. Neutron Star-White Dwarf Binaries

    Full text link
    We consider the statistics of pulsar binaries with white dwarf companions (NS-WD). Using the statistical analysis method developed by Kim et al. (2003) we calculate the Galactic coalescence rate of NS-WD binaries due to gravitational-wave emission. We find that the most likely values for the total Galactic coalescence rate (R_tot) of NS-WD binaries lie in the range 0.2--10 per Myr depending on different assumed pulsar population models. For our reference model, we obtain R_tot=4.11_(-2.56)^(+5.25) per Myr at a 68% statistical confidence level. These rate estimates are not corrected for pulsar beaming and as such they are found to be about a factor of 20 smaller than the Galactic coalescence rate estimates for double neutron star systems. Based on our rate estimates, we calculate the gravitational-wave background due to coalescing NS-WD binaries out to extragalactic distances within the frequency band of the Laser Interferometer Space Antenna. We find the contribution from NS-WD binaries to the gravitational-wave background to be negligible.Comment: 20 pages, 2 figures, 2 tables, Accepted for publication in Ap

    Stability window and mass-radius relation for magnetized strange quark stars

    Full text link
    The stability of magnetized strange quark matter (MSQM) is investigated within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. We obtain that the energy per baryon decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM. This implies that MSQM is more stable than non-magnetized SQM. Furthermore, the stability window of MSQM is found to be wider than the corresponding one of SQM. The mass-radius relation for magnetized strange quark stars is also derived in this framework.Comment: 12 pages, 6 figures, 3 table

    Quark Matter in Neutron Stars: An apercu

    Get PDF
    The existence of deconfined quark matter in the superdense interior of neutron stars is a key question that has drawn considerable attention over the past few decades. Quark matter can comprise an arbitrary fraction of the star, from 0 for a pure neutron star to 1 for a pure quark star, depending on the equation of state of matter at high density. From an astrophysical viewpoint, these two extreme cases are generally expected to manifest different observational signatures. An intermediate fraction implies a hybrid star, where the interior consists of mixed or homogeneous phases of quark and nuclear matter, depending on surface and Coulomb energy costs, as well as other finite size and screening effects. In this brief review article, we discuss what we can deduce about quark matter in neutron stars in light of recent exciting developments in neutron star observations. We state the theoretical ideas underlying the equation of state of dense quark matter, including color superconducting quark matter. We also highlight recent advances stemming from re-examination of an old paradigm for the surface structure of quark stars and discuss possible evolutionary scenarios from neutron stars to quark stars, with emphasis on astrophysical observations.Comment: 15 pages, 1 figure. Invited review for Modern Physics Letters

    Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    Full text link
    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.Comment: 28 pages, 25 figures, 6 table

    Arecibo timing and single-pulse observations of 17 pulsars

    Full text link
    We report on timing and single-pulse observations of 17 pulsars discovered at the Arecibo observatory. The highlights of our sample are the recycled pulsars J1829+2456, J1944+0907 and the drifting subpulses observed in PSR J0815+0939. For the double neutron star binary J1829+2456, in addition to improving upon our existing measurement of relativistic periastron advance, we have now measured the pulsar's spin period derivative. This new result sets an upper limit on the transverse speed of 120 km/s and a lower limit on the characteristic age of 12.4 Gyr. From our measurement of proper motion of the isolated 5.2-ms pulsar J1944+0907, we infer a transverse speed of 188 +/- 65 km/s. This is higher than that of any other isolated millisecond pulsar. An estimate of the speed, using interstellar scintillation, of 235 +/- 45 km/s indicates that the scattering medium along the line of sight is non-uniform. We discuss the drifting subpulses detected from three pulsars in the sample, in particular the remarkable drifting subpulse properties of the 645-ms pulsar J0815+0939. Drifting is observed in all four components of the pulse profile, with the sense of drift varying among the different components. This unusual `bi-drifting'' behaviour challenges standard explanations of the drifting subpulse phenomenon.Comment: 9 pages, 6 figures. Accepted for publication in MNRA

    How strange are compact star interiors ?

    Full text link
    We discuss a Nambu--Jona-Lasinio (NJL) type quantum field theoretical approach to the quark matter equation of state with color superconductivity and construct hybrid star models on this basis. It has recently been demonstrated that with increasing baryon density, the different quark flavors may occur sequentially, starting with down-quarks only, before the second light quark flavor and at highest densities also the strange quark flavor appears. We find that color superconducting phases are favorable over non-superconducting ones which entails consequences for thermodynamic and transport properties of hybrid star matter. In particular, for NJL-type models no strange quark matter phases can occur in compact star interiors due to mechanical instability against gravitational collapse, unless a sufficiently strong flavor mixing as provided by the Kobayashi-Maskawa-'t Hooft determinant interaction is present in the model. We discuss observational data on mass-radius relationships of compact stars which can put constraints on the properties of dense matter equation of state.Comment: 7 pages, 2 figures, to appear in the Proceedings of the International Conference SQM2009, Buzios, Rio de Janeiro, Brazil, Sep.27-Oct.2, 200

    A precise mass measurement of the intermediate-mass binary pulsar PSR J1802-2124

    Full text link
    PSR J1802-2124 is a 12.6-ms pulsar in a 16.8-hour binary orbit with a relatively massive white dwarf (WD) companion. These properties make it a member of the intermediate-mass class of binary pulsar (IMBP) systems. We have been timing this pulsar since its discovery in 2002. Concentrated observations at the Green Bank Telescope, augmented with data from the Parkes and Nancay observatories, have allowed us to determine the general relativistic Shapiro delay. This has yielded pulsar and white dwarf mass measurements of 1.24(11) and 0.78(4) solar masses (68% confidence), respectively. The low mass of the pulsar, the high mass of the WD companion, the short orbital period, and the pulsar spin period may be explained by the system having gone through a common-envelope phase in its evolution. We argue that selection effects may contribute to the relatively small number of known IMBPs.Comment: 9 pages, 4 figures, 3 tables, accepted for publication in the Astrophysical Journa
    • 

    corecore