1,850 research outputs found
Effects of cyclic adenosine 3,5-monophosphate on photoreceptor disc shedding and retinomotor movement. Inhibition of rod shedding and stimulation of cone elongation.
As a test of the hypothesis that cyclic nucleotides play a role in the regulation of retinomotor movements and disc shedding in the photoreceptor-pigment epithelial complex, we have used an in vitro eyecup preparation that sustains both disc shedding and cone retinomotor movements, Eyecups were prepared in white light from animals in which both shedding and cone movement had been blocked by 4 d of constant-light treatment. In eyecups incubated for 3 h in light, disc shedding was negligible and cones remained in the light-adapted (contracted) position. In eyecups incubated in darkness, however, a massive shedding response (dominated by rod photoreceptors) was induced, and at the same time cone photoreceptors elongated to their dark-adapted position. In eyecups incubated in light dbcAMP promoted cone elongation and thus mimicked darkness; the dbcAMP effect was potentiated by the phosphodiesterase inhibitors papaverine and 3-isobutylmethylxanthine. In eyecups incubated in darkness, on the other hand, both phosphodiesterase inhibitors and dbcAMP reduced the phagosome content of the pigment epithelium. The effects of dbcAMP on the cone elongation and rod shedding appear to be specific in that dbcGMP, adenosine, and adenosine 5-monophosphate had no significant effect. Our results suggest that cAMP plays a role in the regulation of both retinomotor movements and disc shedding
A Cassegrain reflector system for compact range applications
An integral part of a compact range is the means of providing a uniform plane wave. A Cassegrain reflector system is one alternative for achieving this goal. Theoretically, this system offers better performance than a simple reflector system. The longer pathlengths in the Cassegrain system lead to a more uniform field in the plane of interest. The addition of the subreflector creates several problems, though. System complexity is increased both in terms of construction and performance analysis. The subreflector also leads to aperture blockage and the orientation of the feed now results in spillover illuminating the target areas as well as the rest of the range. Finally, the addition of the subreflector leads to interaction between the two reflectors resulting in undesired field variations in the plane of interest. These difficulties are addressed and through the concept of blending the surfaces, a Cassegrain reflector system is developed that will provide a uniform plane wave that offers superior performance over large target areas for a given size reflector system. Design and analysis is implemented by considering the main reflector and subreflector separately. Then the system may be put together and the final design and system analysis completed
A very wide frequency band pulsed/IF radar system
A pulsed/IF radar for compact range radar cross section measurements has been developed which converts RF returns to a fixed IF, so that amplification and grating may be performed at one frequency. This permits the use of components which have optimal performance at this frequency which results in a corresponding improvement in performance. Sensitivity and dynamic range are calculated for this system and compared with our old radar, and the effect of pulse width on clutter level is also studied. Sensitivity and accuracy tests are included to verify the performance of the radar
Bistatic image processing for a 32 x 19 inch model aircraft using scattered fields obtained in the OSU-ESL compact range
Inverse Synthetic Aperture Radar (ISAR) images for a 32 in long and 19 in wide model aircraft are documented. Both backscattered and bistatic scattered fields of this model aircraft were measured in the OSU-ESL compact range to obtain these images. The scattered fields of the target were measured for frequencies from 2 to 18 GHz with a 10 MHz increment and for full 360 deg azimuth rotation angles with a 0.2 deg step. For the bistatic scattering measurement, the compact range was used as the transmitting antenna; while, a broad band AEL double ridge horn was used as the receiving antenna. Bistatic angles of 90 deg and 135 deg were measured. Due to the size of the chamber and target, the receiving antenna was in the near field of the target; nevertheless, the image processing algorithm was valid for this case
Analysis and measurement of electromagnetic scattering by pyramidal and wedge absorbers
By modifying the reflection coefficients in the Uniform Geometrical Theory of Diffraction a solution that approximates the scattering from a dielectric wedge is found. This solution agrees closely with the exact solution of Rawlins which is only valid for a few minor cases. This modification is then applied to the corner diffraction coefficient and combined with an equivalent current and geometrical optics solutions to model scattering from pyramid and wedge absorbers. Measured results from 12 inch pyramid absorbers from 2 to 18 GHz are compared to calculations assuming the returns add incoherently and assuming the returns add coherently. The measured results tend to be between the two curves. Measured results from the 8 inch wedge absorber are also compared to calculations with the return being dominated by the wedge diffraction. The procedures for measuring and specifying absorber performance are discussed and calibration equations are derived to calculate a reflection coefficient or a reflectivity using a reference sphere. Shaping changes to the present absorber designs are introduced to improve performance based on both high and low frequency analysis. Some prototypes were built and tested
Computer analysis of aircraft and shuttle antennas
Progress on predicting the patterns of high-frequency antennas on aircraft and shuttles is reported. Patterns are presented for an axial slot antenna on a circular cylinder partially coated with a dielectric layer. Results are shown for Omega signal disturbance by a conducting vertical pole
New main reflector, subreflector and dual chamber concepts for compact range applications
A compact range is a facility used for the measurement of antenna radiation and target scattering problems. Most presently available parabolic reflectors do not produce ideal uniform plane waves in the target zone. Design improvements are suggested to reduce the amplitude taper, ripple and cross polarization errors. The ripple caused by diffractions from the reflector edges can be reduced by adding blended rolled edges and shaping the edge contour. Since the reflected edge continues smoothly from the parabola onto the rolled surface, rather than being abruptly terminated, the discontinuity in the reflected field is reduced which results in weaker diffracted fields. This is done by blending the rolled edges from the parabola into an ellipse. An algorithm which enables one to design optimum blended rolled edges was developed that is based on an analysis of the continuity of the surface radius of curvature and its derivatives across the junction. Futhermore, a concave edge contour results in a divergent diffracted ray pattern and hence less stray energy in the target zone. Design equations for three-dimensional reflectors are given. Various examples were analyzed using a new physical optics method which eliminates the effects of the false scattering centers on the incident shadow boundaries. A Gregorian subreflector system, in which both the subreflector and feed axes are tilted, results in a substantial reduction in the amplitude taper and cross polarization errors. A dual chamber configuration is proposed to eliminate the effects of diffraction from the subreflector and spillover from the feed. A computationally efficient technique, based on ray tracing and aperture integration, was developed to analyze the scattering from a lossy dielectric slab with a wedge termination
GTD analysis of airborne antennas radiating in the presence of lossy dielectric layers
The patterns of monopole or aperture antennas mounted on a perfectly conducting convex surface radiating in the presence of a dielectric or metal plate are computed. The geometrical theory of diffraction is used to analyze the radiating system and extended here to include diffraction by flat dielectric slabs. Modified edge diffraction coefficients valid for wedges whose walls are lossy or lossless thin dielectric or perfectly conducting plates are developed. The width of the dielectric plates cannot exceed a quarter of a wavelength in free space, and the interior angle of the wedge is assumed to be close to 0 deg or 180 deg. Systematic methods for computing the individual components of the total high frequency field are discussed. The accuracy of the solutions is demonstrated by comparisons with measured results, where a 2 lambda by 4 lambda prolate spheroid is used as the convex surface. A jump or kink appears in the calculated pattern when higher order terms that are important are not included in the final solution. The most immediate application of the results presented here is in the modelling of structures such as aircraft which are composed of nonmetallic parts that play a significant role in the pattern
Edge diffracted caustic fields
The fields near a caustic created by an edge diffraction process are computed using the equivalent current concept. These fields are shown to have the property commonly associated with ray optical analysis or the Geometrical Theory of Diffraction (GTD), e.g., a 90 deg phase shift as the ray passes through the caustic. The present effort is directed toward consideration of the caustic created by an edge diffraction process. Particular attention is focused on electromagnetic excitation. The acoustic excitation for the hard boundary condition is outlined in an appendix. In addition, goal is to establish the extent of the caustic region. This is of particular importance when a ray optical solution involves multiply-diffracted terms in that the minimum size of the body that can be analyzed may be restricted by the extent of the caustic, i.e., the 90 deg phase shift used in ray optical analysis may be introduced only if the caustic is contained on the surface being studied
Volumetric pattern analysis of airborne antennas
By blending together the roll and elevation plane high frequency solutions, a very efficient technique was developed for the volumetric pattern analysis of antennas mounted on the fuselage of a generalized aircraft. The fuselage is simulated by an infinitely long, perfectly conducting, elliptic cylinder in cross-section and a composite elliptic cylinder in profile. The wings, nose section, stabilizers, and landing gear doors may be modeled by finite flat or bent plates. Good agreement with accurate scale model measurements was obtained for a variety of airborne antenna problems
- …
