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CHAPTER I

INTRODUCTION

Recently, the indoor compact range has received much attention and
is increasng in popularity as it rivals the outdoor range for antenna
and scattering measurements. As the compact range performance improves,
its use will continue to grow. An integral part of this system is the
means of providing a uniform plane wave. This study presents a
Cassegrain antenna feed system as a means to achieve a more uniform
plane wave,

Normally, a single parabolic reflector is used to generate this
plane wave, Edge diffractions are the major drawback to this reflector
system because they generate ripple on the desired uniform plane wave.
One method used to reduce this ripple is through the use of serrated
edges. The‘edges may also be rolled to reduce the ripple and provide
structural strength as well., Large circular rolled edges provide
greater ripple reduction but require additional structural support and
are more costly. Elliptic edges are also used to control ripple and
these are more effective than simple circular edges since there is more
control over the shape such that a smaller ellipse can work as well as a
larger circular edge. At the bottom of a parabolic dish section,

serrated absorber patterns are often used to break up the field. Proper




tapering of the feed horn field pattern will also minimize the
diffracted fields.

Another possible alternative to the reflector system is the use of
a lens antenna. But lens antennas are not being widely used due to
several disadvantages. Although lens antennas are frequency dependent,
the major disadvantage is in the construction of the antenna itself.
Reflector antennas are much easier to design since only one surface
needs to be considered. If made of natural dielectrics, lens antennas
can be heavy and bulky, especially at lower frequencies. The
homogeneity of the dielectric is also often in question. Besides the
structural problems, lenses are also inherently lossy and reflections
occur at both interfaces [1]. Therefore, reflector type antennas are
usually favored over lens antennas.

The alternative considered in this study is the Cassegrain
reflector system. Theoretically, the Cassegrain system offers better
performance than a simple reflector system. The longer pathlengths in
the Cassegrain system lead to a more uniform field in the plane of
interest. The convenient location of the feed and supporting hardware
is another advantage of this system.

Initially, several disadvantages to the Cassegrain system are
apparent, The addition of the subreflector increases system complexity
both in terms of construction and performance analysis. The
subreflector also gives rise to aperture blockage. The orientation of
the feed now leads to spillover illuminating the target area as well as

the rest of the room, Finally, the addition of the subreflector leads




to interactions between the two reflectors resulting in undesired field
variations in the target area. These problems are considered as the
Cassegrain system is designed and analyzed.

The major design consideration in implementing the Cassegrain
system is through the blending of the edges to improve performance as
opposed to simply attaching circular or elliptical edges. The blending
technique is a better method of providing the transition from one curve
to another., Blending also reduces the junction diffracted field and
therefore enhances performance. The tapering of the field is also
controlled through the blending process. In fact, the blending concept
is what allows the Cassegrain system to work as an effective source of a

uniform plane wave.




CHAPTER II
THEORY

A.  CASSEGRAIN REFLECTOR SYSTEM GEOMETRY

The Cassegrain antenna system consists of a main reflector,
subrefiector, and feed. The main reflector is a parabolic curve while
the subreflector has a hyperbolic contour. Two foci are present in
this system: the real focal point located at the feed and the virtual
focal point located at the focus of the parabola. To generate this
system, two variables for each reflector must be specified. Seven
variables are used to describe this system and three equations used to
solve for the three remaining unknowns (Figure 2.1) are as follows:

tan gov = 4 (2.1)

1 ., 1 .,Fc
tangv  Taner Ds , and (2.2)

1 - sin(¢v=-¢r)/2 - 2 Lv
SIN(v+or)/2 Fc . (2.3)

Equation (2.1) applies to the main reflector while Equations (2.2) and

(2.3) apply to the subreflector., The negative sign applies to the




Gregorian forms of the system.

The parabolic main reflector is generated by

2
Xi =Ym
" . (2.4)

The hyperbolic subreflector is generated by

xs = al/ 1+ - 1] (2.5)

where

e = Sin(gv+er)/2 .
SIN(ov=or)/2 (2.6)

a:FC
Ze , and (2.7)
b = a/e2-1 (2.8)

15 govern the ciassical Cassegrain system. Using these
equations, many variations of the basic system may be formed. For this
study, the basic system of Figure 2.1 is sufficient, though one
variation is considered. The Gregorian form occurs when the focus of
the main reflector moves between the two reflectors (see Figure 2.2).
In this case the contour of the subreflector is elliptical. The
negative sign must be used in equation (2.1) since ¢v is now negative.
Otherwise, the equations remain the same.

In later analysis, the use of the virtual feed is made. In this

concept, the real feed and subreflector are replaced by a virtual feed
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at the focal point of the main reflector. The system is now a single
reflector design, and this concept is useful when designing and
analyzing the main reflector,

Another useful concept is that of the equivalent parabola. As is
seen in Figure 2.3, the Cassegrain system is replaced by an equivalent
surface which has a parabolic contour as demonstrated by Hannan [2].
psing this concept, the feed remains unchanged, and ray optics are used
to determine the surface as the locus of incoming rays intersecting the
rays converging to the real feed. Then the Cassegrain system has been
replaced by an equivalent single reflector system. The following

equations show the relationship between the two systems:

].Dm= 1 r~ AY
TTe tan?¢r (2.9)
= Yel
Xe e  » and (2.10)
+ Fe = tan¢v/2 - Lr _ e+l
Fm Taner/2 T, e-T . (2.11)

Again, the negative sign applies to the Gregorian forms. Equation (2.9)
generates the equivalent focal length. Equation (2.10) generates the
equivalent parabolic surface, and Equation (2.11) provides several
expressions for comparing the focal lengths. For the classical
Cassegrain system, Fe/Fm is greater than one. It is apparent that a
Cassegrain system has a much smaller focal length but can be equivalent

to a single reflector system of much larger focal length. It is this
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Figure 2.3 Equivalent-parabola concept.




idea that favors the Cassegrain system over the single reflector system,
When working in a restricted area, such as a compact range, the shorter
Cassegrain system is favored over the longer equivalent sing]e reflector

system [2].

B.  MOMENT METHOD ANALYSIS

Several analysis techniques are used when studying the Cassegrain
system, The first that will be described is the moment method theory.
Only the two-dimensional part of this theory is outlined [3]. By using
the reaction concept of Rumsey [4], a moment method solution may be
obtained. In Figure (2.4) a scattering problem is presented. The
source electrical and magnetic currents (Si,ﬁi) generate electric and
magnetic fields (E,;) in the presence of the scatterer which is a
conducting body in free space.

The surface-equivalence theorem of Schellkunoff [5] gives an
equivalent problem by replacing the scatterer by the following surface

current densities:
Js=nxH , and (2.12)
MS = E XxXn (2'13)

with n being the outward normal to the surface. It is self-evident that
the source currents (Ji,ﬁi) generate the incident fields (Ei,ﬁi) in the

free space. The scattered fields are given by

Es = E - Ey, and (2.14)



(£.8)

> > >
(a) The source (31,Mi) generates the field (E,H) with
the scatterer present.

(.0

(4. 4) SCATTERER

> >
(b) The interior field vanishes when the currents (Jg,Mg)
are introduced on the surface of the scatterer.

OR
FREE SPACE

-~ ‘\

/ \\ “l M)
gt N\

\ \\

\ \

(5. )

\
\\ FREE SPACE,'

\
\‘_,’

-— gy,

> >
(c) The exterior scattered field may be generated by (Jg,Ms)
in free space.

Figure 2.4 Scattering problems.
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He = H - Wy . (2.15)
The surface currents generate the scattered fields (Es,ﬁsf outside the
body and ('Ei"gi) inside the body.

An electric test source am is now placed within the region of the
scatterer (see Figure 2.5). Because there 1is no field in this region,
the reaction of this test source with the field produced by the other
sources is zero. By reciprocity, this reaction must be equivalent to
the reaction of the other sources with the field produced by the test

source, Then, one finds that
JIQs Eq-Ms <Hp)ds + [[[(J5Ep-Mj Hp)dv = 0 (2.16)

This equation is the basis of this solution and approach is the

"zero-reaction theorem" of Rumsey [4].

Next, the surface current distributions (Jg,Ms) need to be
determined. These currents are constructed of finite series with N
unknown coefficients., For this problem, the scattering body is a

perfect electrical conductor so Mg vanishes. Since only the
two-dimensional case is being considered, Jg is a function of the
position % around the contour of the body. Also consider a magnetic

line source and TE, polarization so that Ji is zero. Then the integral

equation reduces such that

Jds+Ep d2 = [[ MjeH, ds . (2.17)
C

11
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Figure 2.5 Placement of test source.

The electric currents may now be represented by

- N
Jg(2) = § Indn(2) (2.18)

n=1
where I, are complex constants, and samples of Jg(2&) and J,(2) are the
basis functions. The basis functions as well as the test source have

unit current density at their terminals. Substituting this series into

the integral equation yields
N

X Iann = Vm with m = 1,2,3,...N (2019)
n=1

12
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where

Zmn = - fn Jn(z) 'Emdz = -fme(ﬂ.) 'Endz, and (2.20)

m = 'ffi;i'amds = fmsm(l)‘gidl (2.21)

with the integrations are done over the non-zero range of the
integrands.

When solving these expressions on a computer, it is advantageous
for the impedance matrix, Zy,, to be symmetrical. Also, the test
sources, Sm, should be the same size, shape, and functional form as the
basis functions an- This will allow some of the integrals to be solved
in closed form and yield readily solvable simultaneous linear equations.
In addition, the test sources are placed a distance § from the surface
where § tends toward zero in the limiting case of the integrals. In
this case, sinusoidal strip dipoles are chosen as the basis functions

(see Figure 2.6). This planar strip dipole extends infinitely in the

z-direction and has a surface current density given by [9]

; sinlk(x-x1)]
sin[k{x2-x1)] (2.22)

J

for x3 < x < x2, and

; sin[k(x3-x)]
STNLK(X3-x2) ] (2.23)

for xp < x < x3. Similarly, for the strip v-dipole in Figure 2.7 the

surface current density is given by

A
-

J = - sinlk(t1-t)]

STn(ks1) (2.24)

13




(a) A planar strip dipole with edges at xj and x3 and
terminals at x2.

[

_——— — —0— —_——— ==X
X2 L 8 ]

>
(b) The current-density distribution J on the sinusoidal
strip dipole,

Figure 2.6 Sinusoidal strip dipoles for basis functions.
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on arm s, and

3 - ¢ sinlk(ty-t)] | .
ST (KE]) (2.25)

on arm t. It is evident that s and t are perpendicular to the z-axis.

In both cases, the current density goes to zero at the endpoints and is
unity at the center terminals. Also, a slope discontinuity is present
at the center terminals. Of course the v-dipole reduces to the planar

case when ¢ is equal to 180°,

The field of the strip dipole may be obtained from the
superposition of two strip monopoles considered to have a common
endpoint (see Figure 2.8), The field for the strip monopole is known
from reference [6]. Now the calculation may begin for elements of the
impedance matrix as well as the V, elements of the excitation column.

First consider an open or closed perfectly conducting polygon
cylinder (see Figure 2.9). For this open cylinder, surface currents

-

£ AL . PR T, - A AN e . a4 A _ .
[ ne cunaucLor, ana Lne suridee currerne aensiiy s

w on both sides o
given by 35. A magnetic line source M;j is present and Ij and I are the
current densities at the corners of the polygon. Two strip dipole mode
currents may now be defined on the conductor. The first extends from
point 0 to point 2 with terminals at point 1. The second extends from
point 1 to point 3 with terminals at point 2. Each mode has a
sinusoidal current distribution as described earlier. Now the current
density 35 is the superposition of these two modes with weightings of Ij

and Ip. Then Jg is a piecewise sinusoidal expansion with unknown

constants, I; and I2. Since the polygon is a perfect conductor, the

15



Figure 2.7 Nonplanar strip dipole with edges at s; and t; and terminals
at 0,

° SOURCE h

Figure 2.8 An electric strip monopole and the coordinate system.
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(a) Perfectly conducting polygon cylinder with parallel

>
magnetic line source Mj.

® Mi PROBE 2—__

™~

™—_PROBE 1|

(b) Electric test probes 1 and 2 are moved to the conducting
surface.

Figure 2.9 Probing of a perfectly conducting polygon cylinder.

17



tangential electric field is zero on the surface. So, if an electric
test probe is moved along the conducting surface, the open circuit
voltage at its terminals can be examined. For N different current
samples, N probing tests are done. The probes may be real (thin wire
v-dipoles) or hypothetical (electric line sources or strip dipoles).
Then the currents I, are adjusted until all the probes read zero.
Finally, as N increases this stationary solution for the currents
approaches the rigorous solution. The mutual impedance between the mth
test probe and the nth current mode is Zyn. The probe sums all the
voltage contributions from 35 and gi and this result must be zero,
resulting once again in Equations (2.19) to (2.21).

Finally, the simultaneous linear equations are solved using linear
algebra techniques, and the current distribution 35 is known. The
scattered fields (ES,;S) may then be found. J.H. Richmond [6] provided
this theory, method, and appropriate computer programs. Using duality,

the TM polarization case could also be solved.
C.  UNIFORM GEOMETRICAL THEORY OF DIFFRACTION ANALYSIS

Another analysis technique used is that of the Uniform Geometrical
Theory of Diffraction. Again, only the two-dimensional part of this
theory is outlined.

For the Cassegrain system three basic field components are examined

(see Figure 2.10). These are the incident, reflected and diffracted

fields. The total field is then given by

yTOTAL _ UINC + UREF + UDIF - (2.26)

18
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Figure 2.10 Basic UTD field components.
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where U represents an electric scalar field for the electric line source
case and a magnetic scalar field for the magnetic line source case. The
incident field is given by

-3k pj

Tce Regions I and II, and
Vo;
i

yINC | (2.27)

0 Region III

whereas pj is the distance between the source and receiver, Note that C

is a complex constant. The reflected field is given by

- -jkop
& Region I, and
=
UREF _ fr (2.28)
0 Regions II and III

where pp is the distance from the image of the source to the receiver
and the positive sign is used for the magnetic line source case and the
minus sign for the electric line source case. To simplify calculations
the magnetic line source is used when analyzing the Cassegrain system.

The diffracted field is given by

-jkp' -jkp
WIFF _ 1 p | p'e s¢=¢'sn| +p | 0'p ,¢+d',n ce e
P *p _ _p'¥p _ Yo Yo
- - (2,29)

with the plus and minus signs for the magnetic and electric line source
cases, respectively. The term with ¢-¢' is associated with the incident
shadow boundary while the term with ¢+¢' is associated with the

reflected shadow boundary.

20




Now consider a curved conducting strip as will be found in the
Cassegrain system (see Figure 2,11). The incident field does not change

but the reflected field is now given by

-jkpj =jkp
WEF o | = [ ecl®) e e " Region I, and
Vel 7

0 Regions II and III

(2.30)

with the calculation of p.(Qp) needed. This caustic distance varies

with the reflection point Qg and is given by

1 -1, 2
pc(QR) Pi Rccos®y (2.31)

where R is the radius of curvature of the surface at the reflection

point, Qp. The diffracted field is given by

-jko' -jkp
WIFF _ 1 p | p'o,é-6'sn| +p | Pc'P ,e+¢'sn| [ c e e
_ptp _ _pC +p Yor Vo
(2.32)

]
where P is the caustic distance pc(Qp) associated with the reflected

rayvfrom the edge and n=2 such that

=34 F(xLa(s))
D(L,B,n=2) = - ~5/5K cos(8/2) (2.33)

21
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Figure 2.11 Curved conducting strip.
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. jkLa(B) ,* -j12
F (KL = 2j/RCa(B) dt, and 2.34
(KLa(B)) = 2j/KLa(B]) e faBe 1, an (2.34)
a(B) = 2cos2(g/2) . (2.35)

The diffracted field given is sufficient for the knife edge case
but the general form of the diffraction coefficient is also needed. So
more generally, the diffracted field is expressed by
a~Jkp

yDIFF = Dg Ui(QE)
H Vo

(2.36)

where Ui(QE) is the incident field on the edge, and

_o-in/4

Da(%‘#':n) = 2nv 2wk X

[cot (.‘L*,(Z:ML) F [KL'a*(¢-4')] + cot (.“;g_-;ﬁ).) F LKL a™(4-4')1%

{cot (Eié%iﬁﬂlj F [KL™a*(4+4')] + cot (E:L%%ill) FIKL™a"(s+¢')1}]
(2.37)

where

i 2
o= T
F(x) = 2j/x edX [ e dr, and (2.38)
3
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a*(s) = 2cosz(2ant-s)
2 . (2.39)

Note that N* are integers most nearly satisfying the following

expressions:
2mN*-(B) = =, and (2.40)
2mN=-(B) = -m. (2.41)

These expressions are valid for both the soft and hard diffraction
coefficients but only the hard case is used here with a magnetic line
source. The transition function F(x) involves a Fresnel integral, and a
plot of F(x) is shown in Figure 2,12,

The diffraction coefficient may also be written as

Dg = D(Li,Li,¢-4",n) 7 D(LTN,LTO,4+4',n) (2.42)

S
H

where

D(L1,L2,4¢',n) = [cot(m*(o*4")) p(KLja*(oe')) +
2n

—in/4
cot (1-( $24')) F(KLpa=(424"))] - >
Zn n/21k . (2.43)

Figure 2.13 shows a more generalized structure. Depending on the
positioning of the line source, reflected fields may emanate from both
surfaces. So two ref1eétion shadow boundaries may exist, and hence the
reason D(LFN,LTO ¢+¢',n) is composed of two terms. The first term is
associated with the n face boundary and the second with the o face
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boundary. The o face is defined as the face where the angles ¢ and ¢'

are measured. The n face is the opposing surface. Also, the range

parameters are given by

n
L™ = PcP , and (2.44)

+
pCp

b
A (2.45)

n
where pc and pc are the caustic distances for the reflected waves
emanating from the edge for the n and o faces, respectively. Similarly,
two incident shadow boundaries may exist, andvtwo terms are also

associated with these, In this case, the range parameter is given by

This completes the basic theory and more detailed analysi

in the class notes by Burnside [7] for microwave optics. In later
chapters some additional details of the theory are needed, and they are
presented when needed.

One final technique used in this analysis is physical optics. This
involves rather simple analysis and will be described later when
actually implemented.

The three analysis techniques may now be compared to see the

advantages and disadvantages in each for analyzing the Cassegrain

system. The Uniform Geometrical Theory of Diffraction (UTD) requires

27



analysis of the geometry which may or may not be easily implemented.
Including enough terms to accurately predict performance may be
difficult but if possible, UTD provides results with very little
computation time required. The UTD is also well suited for large
electrical objects such as the Cassegrain system. If results are
consistent with other techniques, UTD may be used as a valuable design
tool because of its high frequency capability and ease of computation.
The physical optics technique is also easy to implement and its results
may be easily compared with the other techniques. Physical optics is an
approximation though, and this is a limitation. Finally, the moment
method technique provides the greatest accuracy but at the expense of
ease of computation. Much computational work must be done so moment
method results require much time and space on a computer. The moment
method is also limited by object size. In the case of the large
Cassegrain system, this limits the upper frequency that may be examined.
Since the moment method provides accurate results, it may be compared
with UTD to see what field components are dominant. So the faster UTD
may be used to initialize a design and the slower moment method to
finalize it. The moment method will also give more accurate results at
lower frequencies; whereas, UTD may_be used to predict the high

frequency behavior,
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CHAPTER III
CASSEGRAIN SYSTEM CONSIDERATIONS

A simple single parabolic reflector is considered initially. A
line source is placed in the presence of half a parabola (see Figure
3.1) whose focal length is specified by f. The reflected field and the
edge diffracted field are examined along a line parallel to the x-axis
and a distance f from the origin. Al11 path lengths from the focal point
to the reflector and onto this 1ine are equidistant and have a value of
2f implying constant phase across the plane for the reflected field.

Now the reflected field in Figure 3.2 is given by the geometrical optics

expression such that

-jkei -jkop
gREF - i//-BE__—'c e e . (3.1)
pctor Vo7
The caustic distance is given by
1 =14 2
pc Pj Rccos(m-63) (3.2)
where
R = 1
c CURVATURE| , and (3.3)
CURVATURE = "o |
(1+(y")2)3/2 (3.4)
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Figure 3.1 Parabolic reflector.

Figure 3.2 Reflected field.
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Solving these expressions for R., one finds that

Re = |2f (14x%/(a£2))3/2] . (3.5)
In addition, one obtains the following:

cos(265) = pc/pj

cos28j = (1 + cos(263)/2

cos®; = y(T+pe/0i)/2 . (3.6)
cos(mn-8;) = -cos®; , and (3.7)
pp + pj = 2f (3.8)

Substituting thse into Equation (3.2), one obtains

= 1
I T :
Pi f1exZ _J372[F_T172 (3.9)
4f2 Pi
Now
Pp = f - XZ/(4f)
or
or =1 -x2 (3.10)
f 42 .

Substituting this result into Equation (3.9), one finds as expected

that

pc = = , and (3.11)
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-jk{pj+
e Jk( i Dr)

REF _ 4 ¢ (3.12)
Yo;
i
with
op = f - x2/(4f) , and (3.13)
o = E T 5T (3.14)

Now UREF is known as a function of x.

The edge diffracted field in Figure 3.3 is given by

-jko' -jkp
DIFF ' Pc? . e e (3.15)
U = Dpp,-',n j:D( s$=¢ ,n)jC -t * *
Ot reton) 2 Mgt 5 —
o
y

Figure 3.3 Edge diffracted field.
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Since n = 2 in this case, one finds that

-jn/4
D(L,8,n=2) =~ F(kLa(s))
2/27k  cos(8/2)
jkLa(B) = -jt2
F(kLa(B) = 2jvkLa(B) e J e dt, and
vkLa(B)

a(B) = 2cos2(p/2) .

From Figure 3.3, one obtains

p' = /ac + (f - a¢/8F)Z , and

as calculated earlier. Also, the following expressions are found

p2 = x2+(p')2 - 2xp'cos 6"
" = n/2 - o'
8' = sin-1(a/p")

cos(n/2 - 8') = sing’
sine' = a/p' , and

p=(x2+ (p')2 - 2xa)l/2

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Now ¢' and ¢ need to be determined. From Figure 3.4, one obtains the

following:

sin(261) = a/p'
ol = 1/2 sin-1(a/p")

n/2 - of

1}

¢l
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i cos'l("‘iﬁfﬁ')z + oy : (3.24)
ey (3.25)
B~ =¢ - ¢'

- -y and (3.26)
BY = ¢+ ¢' .

Substituting Equations (3.25) and (3.23) into (3.22), one finds that

gt =« - sin~l(a/p') + v . (3.27)
X . +a
208’
4; 0
/ o
Y
X
y
| f

Figure 3.4 Edge diffacted field.
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The range parameters are given by

- ]
g . e | (3.28)
]
o ¥p
c

since p. = =,

Now the edge diffracted field is known from

_ju/d -jk(p"'+p)
DIFF _ e (F(kL-a(g")) + F(kL*a(8%))) c e '
2/2_1? COS(B-/Z) COS(B+/2) \/p'p (3.30)

Then the total field is given by UREF 4+ yDIFF jp Equations (3.1) and

(3.30). A typical plot is given in Figure 3.5.
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Figure 3.5 uREF UDIFF,
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Now the addition of a rolled edge is made to the parabola to reduce
the ripple generated by the diffracted field (see Figure 3.6). The
diffracted field at the junction must now be recalculated. More

generally, one obtains that

, -jke
oPIFF - Dg wi(Qg) © (3.31)
H /o
i e_jkp' (3.32)
(Q) =c¢ .
u E /37
Ds = D(L1,Li,¢-¢',n) % D(LFN,LFO,4+4',n), and (3.33)
H
D(L1,L2, 624" ,n) = [cot(m+(ox¢')F(kLja*(o24'))
1,L2 ( (xxLozel)JF (kL
(26') JF(KLpa-(o26')) ] € 0 (3.38)
+ cot(m-(ot4') JF(kLoa=( ¢t¢' . .
( Zn 2nv27k

The distance given by p and p' have been previously calculated but the

two terms of Dg need to be considered. Looking at D(Li,Li, 4-¢',n), one

H
finds that
D(Li,Li ~in/8 -
L sl- ’¢°¢'9n) = =-e cot 1r+(¢-¢') F(kL’a (¢_¢l))
2nv27k [ ( 2n )
+ cot("'(:'¢'))F(kLia'(¢-¢'))] (3.35)
with
n=1 (3.36)
L= p'p (3.37)
p t+p _
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Figure 3.6 Rolled edge addition,

and ¢ and ¢' are also known. Recall that

a*(8) = 2cos?(2nmN*-(8))

where Nt are integers which most nearly satisfy the following:

2mN*t - (B) = x , and

2mN- - (B) = -1 ,

But n=1, so
a*(8) = 2cos®(mN*-p/2) , or
ai( B) = 2cosz( B/2)

which implies that

a*(8) = a~(8) . (3.38)
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Inserting Equation (3.38) into (3.35) yields

. ~jm/4
D(L',L7, ¢-4",1) = :%75?E’ {cot (n/2 +(4-4')/2)
+ cot(n/2 -(4-4")/2)} F(kL'a*(4-4") . (3.39)

From the geometry, one finds that

2+ +ente - ) - S e

-sina 4 Sina
cosa CoSa

=0,
Thus, the incident shadow boundary terms are given by
(LT ,LY, 4-9,1) = 0 (3.40)

Now looking at the remaining terms, one obtains

-jn/4
D(LM,LMO, 4+4',1) = 8 [cot(n/2 + (4+¢')/2)F(kLMa"(4+4"))
2/2mk
+ cot(m/2 - (¢+¢")/2)F (KL Ca"(¢+¢'))]. (3.41)
But as before,
a*t(g) = a7(8) = a(B) . (3.42)
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Now

0
LFo - PP -, . (3.43)

0
+
pCp

o
since pc is infinity from previous calculations.

For the n face, one obtains that

n
L™M =P P , and (3.44)
pc tp
1 =.1_+ 2 .
:zr— p'  Rccos 6! (3.45)

But p' is known and R. is given leaving

o = 1/2 sin"}a/p')

or

cos® = cos[1/2 sin’l(a/p')] . (3.46)

Note that 92 is known from Equation (3.45) and L™ from Equation (3.44).
Finally ¢+¢' is given by Equation (3.27) and the diffraction coefficient
is known from Equation (3.41). The diffracted field is then obtained
using Equation (3.31). Again the reflected field and recalculated
diffracted field are summed for various radii of curvature. In Figure
3.7, the reduction in ripple is evident with increasing radii of
curvature. The discontinuity at the edge is also apparent resulting

from the absence of the edge reflected field.
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Figure 3.7 (Continued).

Now consider the Cassegrain system. The governing equations have
previously been described in the theory section. Again, the reflected
field is analyzed first (see Figure 3.8) and is given by

-jk p3 -jk p3
o JKpj e JKpj

WREF _ /BT ¢ . (3.47)
1 Pl Prl Voo

i

The reflected field caustic position is calculated easily from the

following geometrical considerations:

2 2 2
ey = (Lv=x )™ + y (3.48)
2 2 2
o5 =Yg * (Fe-lv#x )™ | and (3.49)
2 2 2 _
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Now it is necessary to relate yq in terms of yp, the desired field

point. First, one obtains that
= Fm - 2/(4Fm)
r2 Im

X =a [y1+ (yg/b)Z - 1] , and

tana = Pr2 = Lv-xg
Ym Ys .

Substituting Equations (3.51) and (3.52) into (3.53) yields

va + 2alv
1+ —F/—————

yg =LV ta -a (bc1)2
¢y - (1/eq)(a/b)?

Figure 3.8 Reflected field.
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So now Pc1, Pi, and Pp1 are in terms of yq, and U?EF may be
calculated from Equation (3.47). Then, the reflected field along the

observation line is given by

| -jkp
UEEF _ U?EF e r2 (3.56)

since pc2 = =, Note that ppp is given by Equation (3.51).
The diffracted field from the main reflector edge is computed now.

As with the parabolic problem, one finds that

DIFF .  REF e 9P B +oE1) Pe2P
WIF =y [p((Pritec1)e 4igt.n) + D 0+e'an)]
1 1E
) E . E + pc2te
Pr17Pc17P
(3.57)
where

i (3.58)

(3.59)

pc=

“véLv-x§)2+(Ds/2)2

Xt - abA+(DS/2)2 1] (3.60)

-

[ —

ot Ds/2)% + (FeLvnt)? (3.61)
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£ = Vom/2-08/2)2 + (Epm(Lu-sEN? . and (3.62)
oy = Fm - (Dm/i)z , (3.63)

Again, the diffraction coefficient consists of terms as follows:

-jn/4
=2} = - F(kLa(B)) (3.16)
P Bn=2) = e CosTe7)
and
a(g) = 2cosz(8/2) . (3.18)

From parabolic edge calculations, one obtains that

p = (ym2 + (oEl+oEI)2 - ymDm)”2 (3.64)
P2 %>
B =4~ ¢
2, E E 2 2
8~ = cos™! [Ym +(or1tec1)” + o ] (3.65)
E E
2(pytecy)e
8" = ¢+ ¢
8+ = 7 - s-in-l Dm + 8_ (3.66)
E E
2(pr‘1+pc1)
E E
L= = (Prl+pc1)p , and (3.67)
E E '
(pl"1+pC1+p)

a4




+ (3.68)
since Pc2 = », So finally, the diffracted field is given by

-jkp -jn/4
WDIFF _ (REF e . e [F(kL-a(8-)) + F(kL*a(8*))] . (3.69)
2/ 2/2tk  cos(B=/2) cos(8*/2)

The sum of UEEF and U?IFF is shown in Figure 3.9 for one example.
Another major field component is the diffracted reflected field

from the subreflector edge (see Figure 3.10). This field is given by

E
-jk o3 -jk
e JK P§ e JKp1

E
DIFF _ /P E ,
U = C { ¢ [D(p1 1 ,¢-¢ ,2)
2 pctp2 /;E v E

A1 Pi+ey
E -jkp
+D(%PL 449',2)]}e 2
oE+o. {2 7N\
1 \Vei vy
with
-jn/4
D(L,B,n=2) = -e F(kLa(B))
2/27k  cos(B/2) (3.16)
and
a(B) = 2cos2(s/2) . (3.18)
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Figure 3.10 Subreflector diffracted field.
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The geometry for this field analysis is given in Figure 3.11.

The

needed relationships between the various parameters are given as

follows:

E

L
2

)2

¢-¢'

= ¢+¢’

E
- Pip]

E,2
1/2 cos~1[{p1) *ler

(Dm/2)2/(4Fm)

E

2 2
1) =s

EE
2050

0.

i

= y% + (Fm-Fc-y%/(4Fm)

cos

1

2

(Xm - (Fm-Fc)2)2 + (bm/2)2

]

1] (o) 2e(op)2(s)

2

8 +"-261

, and

pE"'pl

E
= PcPl

E

Petey

2°§°1

Now pc in Figure 3,12 is given by

1

Pc

=1—.+
f1

2
Recos(m-65)
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(3.71)

(3.72)
(3.73)
(3.74)
(3;75)

(3.76)

—
(93]
L[]
~dJ
~J
~

(3.78)

(3.79)

(3.80)



Figure 3.11 Subreflector diffracted field.

Figure 3.12 Caustic distance,
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and

Re = |2Fm(14y2/ (aFn7) > . (3.81)

from Equation (3.5). The reflection point is found from an iterative
routine given in Appendix A. Now UglFF is known from Equation (3.70).
The sum of UgEF, U?IFF and U%IFF is given in Figure 3.13 as a sample
geometry.

The discontinuity in Figure 3.13 may be alleviated somewhat by
extending the subreflector and reducing doubly diffracted fields (see
Figure 3.14). The subreflector size is now determined by ¢g; whereas,
Dg may be found from

TAN¢s = DE/2 . (3.82)

Tv=xs
Dg/2

Inserting the system parameters into this equation and solving for D

yields
D = (TANg ) [atLvt/a®+(2alv+Lv®)((aTANZ¢s)/b7)] (3.83)
1 a%TAN? g
2 2p2

with the minus sign giving the desired solution.
The diffracted reflected field may now be recalculated (see Figure

3.15) using

DEED

o= alr @R - 1) (3.88)

DEED ED

J = »/(DE/Z)2 + (Fc-Lv+xSDE )2 (3.85)
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Figure 3.15 Subreflector diffracted field.

DEED 2 DEED, 2
P = //(DE/Z) + (Ly=xg ) and

ik PEED ik | DEED
-J p_i -J pl -
BIFF = /T (8 e [D(EL_PL ,4-¢',2)
pctp2 DEED Yo DEED
p' 1 Ps +p
1 i 1
DEED -jkp
+D(P_PL grg',2)]fe 2 -
DEED,
Dc 91

In this case, one finds that

where
DEED 2 DEED 2 2
a= cos‘l[(Pi ) +(pe ) -Fc

DEED DEED .
pi pC

2
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In addition,

¢l = "/2 - ei‘ ) (3.90)

Again, 8  is given by Equation (3.76); whereas,

B = g+o' = 87+a . (3.91)

REF yDIFF DIFF

The sum of U2 » 1 and U2 is again shown in Figure 3.16. The

reduction in the discontinuity is obvious.

To reduce the ripple, a rolled edge is now attached to the main
reflector (see Figure 3.17). The analysis is similar to the single

reflector design discussed previously. First, the diffracted is given

by
. -jkp
U?IFF =D U1(QE)9 (3.92)
P
and
Ui(QE) - (REF (3.93)

1 QE

which is known from Equation (3.58) and those that follow. Again, one

obtains the following:

Lo (3.94)

]}
©

n
L™ - ech (3.95)

n
pcte
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Figure 3.16 (Continued).

Figure 3.17 Rolled edge addition to main reflector.
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1 -1 4+ 1
T pj  Recosb;

E E
Pj = pc * Prp s and

.1 -1 Dm
iy 77 -

Then, the diffraction coefficient is given by

-jn/4

D=8 [cot(m/2 + (¢+6')/2)F(kL ™ a(¢+¢"))

2V27k
+ cot(n/2 - (¢+¢')/2)F (kL Ca(¢+4'))]

and UPIFF

(3.96)

(3.97)

(3.98)

(3.99)

1 is known from Equation (3.92). The effect of increasing RC on

the reduction of the fast varying ripple is shown in Figure 3.18.

The slow varying ripple may now be reduced by attaching a rolled

edge to the subreflector (see Figure 3.19). In this case, one finds

that
-.kp
WOIFF _ //7%?“‘UDIFF o P2
2 Pt P2
where
| DEED
DIFF _ e ot IR

o
Vi

In addition, the range parameters are given by

DEED
Lo - pc Pl
plgEED+p1

55

(3.100)

(3.101)

(3.102)



$,-

&
1]

35°

\
F = 100X

Fe = BOX
b, =35°

RCMAIN=0

DB

-gﬁ.-?ﬁ.-?“.-Z?.—?O.-IB.—IS.~IU.-12.—10. -8. -6. -4. -2.

T LAADALAN UASALOADALAABALAASAL SARAL SAAAE RAAAR MABA RARAE MRS MR | AN MMM AMAM
17 19 21 23 25 27 29 31 33 35.37.39. LH 43. HS 47.49. 51 53 SS 57 59 61 63 65

DISTANCE FROM CENTER
(a) RcMAIN = 0.

0.
bbbl

walaeaalaadda

0B

-26.-24.-22.-20.-18,-16.-14.-12.-10. -B. -6. -4. -2.

paaaliaaats,

= 35°
RCMAIN = IOX

el
-5

sl

T T TW

. M AR HLAARALOASAE SRS RAMR b T M AARE AARA RAALE AAALE RAAAE RARAE RARAS RAAAL RARARN
117.19.21.23.25.27.28.31.33. 35.37. 39, 41 43. 4S. 47,49, 51.53.55.57.59.61. 63. 65.
DISTANCE FROM CENTER

(b) RMAIN = 10A.

- 36

Figure 3.18 UpREF + y,DIFF 4 y,DIFF,

56




< ¢v=35°
5% ¢r =15°
=
] Fn = 100X
T_ Fc = 80\
] = o
* ¢, =35
=] RCMAIN=50\
R (CHANGE IN dB SCALE)

« n..,m.,n.']....,.m,.n.|....,....,.m,.'..,....l,...]....]”..,....pm,..n,u.,,n..,m.Iy.nlm.lm.,u..]....,
+5.17. 19.21.23.25.27.29.31.33.35.37.39.H1.H3.H5.H7.H9.5].53.55.57.59.61.63.65.

DISTANCE FROM CENTER
(c) RCMAIN = 501,

Figure 3.18 (Continued).

AN

~
p
¢
\ f DIFF
JO'FF U,
A 26, n
¢ DEEp
, £
r ¢o )
\‘\¢v
b Fe
F
m

Figure 3.19 Rolled edge addition to subreflector.

57

™



LM - ecPl , and (3.103)
pe + o1
L= 1 4+ 2 (3.104)
n DEED Rccos®i .
c P
As before,
28; =7 -a (3.105)
where
a= cos'l[ "DEED)Z + (ngED)Z - Fc?
DEED DEED . (3.106)
2pi  pc

The diffraction coefficient is given by

-jn/4
D=2 [cot(n/2 + (4+4')/2)F (kL™ a(¢+e')
227k
+ cot(n/2 - (o+¢')/2)F(kL %a(¢+4"))] (3.107)

and 8~ is given by Equation (3.76) and

8% = pre' = gra - (3.108)

The new diffracted reflected field is then given by Equation (3.100).

The effect of increasing R. on the reduction of the slow ripple is shown

in Figure 3.20,

Another field component that needs to be considered is the
reflected-reflected-diffracted field (see Figure 3.21). USC' has been
computed previously and is given by
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Figure 3.21 Reflected-reflected~diffracted field.
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.. EDGE
Rep ~3kep

REF _ v e . (3.109)

Uy

Now, the reflected-reflected-diffracted field is given by

-jkp DEED
WIFF L REF o es2) + D et s 2)] (3.110
3 2 'I'E Psd=¢ pDEED+p st , . )
(o

with D(L,8,n=2) as before. From Figures 3.22 and 3.23, one obtains the

following:

EDGE DEED
Pa S

= Fm-Lv + x2FE0 _ (0c/2)2/(4Fm) (3.111)

o = [(y-DE/2)%+(Lv-xDEED)2q1/2 (3.112)

8" = ¢-¢' = w - sin”} (Z:%ELE) (3.113)

DEED)2, ( DEED)2_ [ 2

a = COS-I[(D1 ) + (pC Fc

» DEED DEED (3.114)
D.i DC

8 =1 - a
, -7
Yy=1w/2 - 6; , and

o = y+sinl] DE/271.
DEED

-1 —_

Now, the diffraction angles are given by

o
]

¢to' = B+ 2¢' , or

>
{

=8+ o+ 2sin"l | D2y |, (3.115)

DEED
iy
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Figure 3.22 Reflected-reflected-diffracted figlg.
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Figure 3.23 Reflected-refiected-diffracted field.
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Note that U%IFF follows from Equation (3.110), A typical plot is shown

in Figure 3.24 that also includes the previously calculated terms.

As can be seen in the previous figure, the knife edgé is
undesirable. An elliptical rolled edge is now attached to the
subreflector to eliminate the reflected-reflected-diffracted field and
reduce the diffracted-reflected field at the expense of introducing a
triple reflected field (see Figure 3.25). This field will be analyzed

next. U?EF has been calculated previously and

=Jkpp
WREF e (3.116)

REF _
1

Us

where pp must be determined. Now the normal of the hyperbolic

subreflector is given by

- ~ 2 -
n=xs . (a/b7)ys y,

Jl+lys7552
(3.117)
2 2
-\/1+((a/b )yS)
I+ {ys/b)
and the center of the ellipse is specified by
(see Figure 3.26). Now the ellipse is paramaterized by
x = Acosv, and (3.119)
y = Bsinv (3.120)

for 0 < v < 2n (see Figure 3.27). Tilting the ellipse and shifting its

center result in Figure 3.28, and one obtains
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Figure 3.25 Triple reflected field.
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Figure 3.27 Ellipse.

Figure 3.28 Tilted ellipse.
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Xg = xcos8 - ysine + Xp, and (3.121)
Yg = xsin® + ycos6 + Y ‘ (3.122)
with _ _
o = sin~1| XE-Xs(Dg/2) | | (3.123)
8

So the subreflector surface is now completely described. Then p» and

UZEF are known. In Figure 3.25, U%EF is given by

-jke3

U3 U, / : ( )
pctP3

2 2-1/2

o3 = [ly-y)® + (Lv=x)%7" (3.125)
1l = 2 , and

pc  Rccos 84 (3.126)
- 2.2 2. .2 33/2 3.127
RC KE[A sin®v + Bcos“v] ( )

where v is given for the ellipse. To determine xg, ys, and 8j, the
reflection point on the subreflector is found from the iterative routine
given in Appendix B. The triple reflected field is then known and a
plot of this field, the reflected field, the diffracted field from the
rolled main reflector, and the diffracted reflected field from the
rolled subreflector is shown in Figure 3.29.

Two additional fields will now.be included for completeness sake.
They are the spillover incident field and the reflected field from the

elliptical rolled edge on the subreflector (see Figure 3.30). Now the
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Figure 3.29 Addition of triple reflected field.
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Figure 3.30 Spillover incident field and reflected field.
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spillover incident field is simply given by

-jkej
yINC _ . e (3.128)
75
with
pj = JyZHFcZ . (3.129)

The shadow boundary designated by yI may be determined analytically.
The reflected field in Figure 3.31 is given by

=Jkpj -Jker

G PctPr

(s,t)

Figure 3.31 Reflected field.
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with

1 =1 4 2

pc P Rccosby v (3.131)
and

R = b [A%stn?y + pPcos2) %2 O (3a3)

To solve for these variables, the reflection point is found using the

same procedure as that in Appendix B. From Figure 3.31 the dot product

is given by
fon P (3.133)
KA

with
n=xx+yy (3.134)
T=-x-dy, and (3.135)
F=x+fy . (3.136)

The normal, 6,_15 given in Appendix B. Solving for f and d yields

f = Asin6écosv + Bcosesinv + YE - t (3.137)
Acosvcos @ - Bsinvsin8 + YE = S

and

d = Asineécosv + Bcos8sinv + YE . (3.138)
Acosvcos8 - Bsinvsing + Xt + Fc-Lv

Once the reflection poifnt is known, one finds that

cos o, = Bcosvcos® - Asinvsin® + f[Bcosvsin® + Asinvcos6] , (3.139)
[Bzcosz 2 2v]1/2[1 + f2]1/2

v + ATsin
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oy = [yrz + (Fc-Lv+x'_)2]1/2 , and (3.140)
o = [ty )2 + (Lvx )22Y/2 S (3aa1)

Finally, Figure 3.32 shows the addition of these two additioﬁa1 field
components as well as those already included in Figure 3.29.

As can be seen from this last figure, it appears that the
Cassegrain system fails miserably when all the major field components
are included but the last two components examined need not pose any
concern, First, the feed design itself will include a taper so that the
spillover and single reflected field will be reduced in magnitude. But
this is tfivia] because these fields may be eliminated altogether by
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Figure 3,32 Spillover field and reflected field additions.
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usin§ a pulse radar system. In this system, the length of the pulse
width determines 2 window through which the return from the target is
examined, Because the pathlengths of the spillover f1e1d;and single
reflected field differ greatly from the desired target return, the pulse
radar does not see these returns since they are not in that selective
window. But, the triple reflected field has nearly the same pathlength
as the desired reflected field so this component can't be overlooked.
The same is true with the diffracted fields, but these are under
relatively good control. So the triple reflected field is seen to be
the major obstacle to good system performance. This field will now be
examined a little more closely,

Up to this point, the target area or plane of interest has been
placed at the focal length, Now it is advantageous to allow this
distance to vary for added flexibility (see Figure 3.33). The four
field components being exaﬁined must be modified, and this is done in
Appendix C. In Figure 3,34, a representative plot shows the total field
and the total field less the triple reflected field. The triple
reflected field at grazing incidence is not accurately portrayed in this
figure. To increase the accuracy, an additional factor is included in

the triple reflected field expression as follows:

-ieL3/12 -im/a | =1 fexb) 4 fpY(eb)yT
LIEL312 u/ _Z_ED_;( ) {q*(gL)}

. (3.142)

e [

But for a magnetic line source
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l

L -—
5813712 ~jasa | =1 F(xt) + q*(h)
Rpn = = /T e e T

h /_EL_u 2tL-Vx

;L = -2m(QR)cose1

xL = 2kLLcosze1

LL = SrS'
sT+g!

m(Q) = [kpg(o)]"3

<.

(3.143)

(3.144)
(3.145)

(3.146)

(3.147)

and pg(Q) is the radius of curvature of the surface at the reflection

point. This is already known, s" is p3, and s' is = so

L
L=p3

(3.148)

Note that cos®; was calculated before and q* is the Fock integral which

is given by

* -jét
(o) =1 '(1) d
a(e) =1 | ke

with
2jv(1) = wy(7) - wa(1)
and
=-je t - t3/3

wi(t) =1 /
2

e dt
7 -e¥32"/3

and ¢ arbitrarily small and positive.
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Now inserting this factor yields Figure 3.35 as a representative plot.
It is apparent that this increased accuracy shows that the triple
reflected field is a serious problem in the Cassegrain system,

To begin to reduce this field, first consider a Gregorian
subreflector system as shown in Figure 3.36. With this offset design
and the subreflector placed low, the triple reflected field is virtually
eliminated. But this configuration introduces a doubly reflected field
that was not present before and must be considered. First, the normal
reflected field is found (see Figure 3.37). The expression for the

first reflected field is

-Jkpi -jk(pctp1) jn/2
e

REF _ e
1] = /_"C e
' "317 1

The caustic distance pc may be calculated from geometrical

. (3.152)

considerations. So, one obtains that

2 2.1/2

pc = [(Lvxg) +ys ] (3.153)
2 2172
pj = [(Fc+lvixg) +yg 1, and (3.154)
2 _1/2
- -y )2 _ym . 3.155
Py [(ym ys) +(Fm+Lv+xS A )] ( )
Then UgEF is given by
-Jkpp
yREF _ REF e (3.156)
2 1
with
2
p2 = DISPLN + Fm+Ly -YM (3.157)

IFm
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Figure 3.36 Gregorian subreflector system.
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ul

DISPLN

Figure 3.37 Reflected field.

since the caustic distance in this case is infinity. Finally, Ys may be

expressed in terms of y, by noting that

TANg = 72 = DISPLN - Lv = Lv + xg
Ym =Ys

which yields

//1 + Lve - 2aly
Y¢ =-Lv + a - a (b c)?

IOK

(3.158)

with

¢ = “Lv-xs | (3.159)
Ys
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Now consider the doubly reflected field shown in Figure 3.38. Again,
attach an elliptical rolled edge to the subreflector. The analysis

proceeds as with the triple reflected field. The angle e needs to be
examined more closely in this situation. If the ellipse is attached

below or at the main axis (Figure 3.39), then

oo = sin~1[XE-Xs (ATTACH POINT)] .

’ B (3.160)
but if it is attached above the main axis (Figure 3.40), then

8=w- 0] . (3.161)

——-Lazrnu
ELLIPSE

: Y A =i A

(ATTACH POINT)

ELLIPSE

Figure 3.38 Doubly reflected field.
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Figure 3.39 Attachment of ellipse.

Figure 3,40 Attachment of ellipse.
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For a given point in the plane of interest, two reflection points
need to be found simultaneously as illustrated in Figure 3.41,

Proceeding as in Appendix B, the first dot product is

1T neh

= (3.162)
UL
(x
y(I)
Figure 3.41 Doubly reflected field.
with
.y _YRiy
M= . 7Fm . (3.163)
(1 +3R125”2
4Fm?
Fl = x +ey, and (3.164)
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A A

T1 =X +cy. (3.165)

Solving for e and ¢ yields that

. - YR1 - ¥ (1) (3.166)
fyél - (Fm+Lv+DISPLN) ]
TFm
and
c = Ya1 - (Asin6cosv + Bcos@sinv = Yg . (3.167)
TYR1%Z - (Fm¥Lv+AcosBcosv - Bsinésinv + Xg]
4Fm

The second dot product is

ng+fp . n2+f1
|Fé| |71| (3.168)

with

~ -~ ~

N5 - Bcosvcos® - Asinvsin® x + Bcosvsin® + Asinvcos6 y (3.169)

[B4cos4v + AZsinZy]177 [BZcos?v + Asinsv]i7¢
rp = -x -cy , and (3.170)
12 ) G ay. (3‘171)

Thus, one finds that

a = Acosvsin® + Bsinvcos® + Yg . (3.172)
LvtFc+Acosvcos® - Bsinvsine + Xg

Now the simultaneous solution to the two dot products in Equations
(3.162) and (3.168) is needed to find the reflection point. This is done
80
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iteratively using bisection methods over the v and le intervals until

these values are found within some specified error. Then v and le give

the two reflection points as

) .
x = 4F 3.173
R1 ‘YRI /(4Fm) ( )
xR2 = Acosvcos® - Bsinvsin® + Xp, and (3.174)
sz = Acosvsing + Bsinvcose + Ygp . (3.175)
Then
=Jkpi ~Jkpy
UREF = © cCS e (3.176)
1 /o5 Pcs*p1
where
pi = [(Fctlvxpp)2 + yRp21/2 (3.177)
Py = [(Fetlvaxpa-xp1)2 + yR1 - yR2)2]1/2 (3.178)
11 2
Pcg = pj + ﬁcCOSGi (3.179)
Re = 71m (A2sin2v + B2cos?y)3/2 (3.180)

and cos 6; may be found from the second dot product. Next the second

reflected field {s

-Jkp2

REF REF  /~pcm (3.181)
U = cm e .

2 1 Pcm + P2

where
1 = 1 + 2 ’
Pcm Pim  Rccos(m-65) (3.182)
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Pim = P1 * pcs (3.183)

Ypi2
m

3/2
Rc = 2Fm (3.184)

cos(m-8;) = -cos6; (3.185)

and cos ®; may be found from the first dot product. Finally the caustic

distance is

p2 = [(Fm+Lv+DISPLN-yR12/(4Fm))2 + (yp1-y(1))2]1/2 (3.186)
and U%EF is known, Typical plots for the sum of this doubly reflected

field and the normally reflected field are shown in Figure 3.42. It is
apparent that attaching the edge higher on the subreflector reduces the
field ripple but intuitively this will increase the triple reflected
field effect which was the original problem. In any case, the effect of
the doubly reflected field with the Gregorian system is unacceptable.
But this system does provide insight into reducing the triple reflected
field by using an offset reflector type of design. So, next let us try
utilizing the offset design with the classical Cassegrain system.
Initially, this type of design poses problems because edges will be
attached to the top and bottom of both reflectors resulting in several

diffracted fields at the junctions. Although the triple reflected field
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Figure 3.42 Sum of two reflected fields.
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Figure 3.42 (Continued).

may be reduced, the additional diffracted fields will degrade overall
system performance, If these diffracted fields could be reduced and the
triple reflected field minimized, an acceptable system would be the
result. Through the blending of the edges considered in the next
chapter, diffracted fields are reduced sufficiently to allow the offset

Cassegrain system to work effectively.

84




CHAPTER IV
THE BLENDED SURFACE

The last chapter brought to view problems encountered in the
Cassegrain system. Now a viable solution is presented to solve these
problems and obtain satisfactory system performance.

The subreflector edges are the first that will be blended as shown
in Figure 4.1. By a blended surface it is meant that the curved
surfaces are blended between an ellipse and the original surface to

which these surfaces are attached. As before the hyperbola is described

by
x = a [/I+{y/b)? -1] (4.1)
with
e = Sin(éy+ér)/2 (4.2)
sin(éy=-¢p)/2
a = Fc
Ze , and (4.3)
b = aVe 'I * (404)
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X

Figure 4,1 Subreflector with blended surfaces.

Figure 4.2 Ellipse for upper edge.

Figure 4.3 Ellipse for bottom edge.
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The blended upper surface 1s given in general by

f = fuvpersoLaP * feLLipse(1-P) o (4.5)
P(v) = 1+cos(mv/vf) | 0<P <1, and (4.6)
.
Yp-Yi
v=EyYy
f Y%:YT » O<vcvs . (4.7)

Note that the parameter through which the blended edge is generated is

Yp with Y§, Y¢ and vf to be specified. Proceeding as in the previous
chapter, the ellipse to be blended is given parametrically as

X = Asinvcos® - Bcosvsing + XELL (4.8)

Y = Asinvsine + Bcosvcos® + Yg| (4.9)
with

6 = sin~}(XELL -BX(V=0)) . (4.10)

XeLL and Yp | are calculated as in the previous chapter and increasing v

s shown in Figure 4,2, Now Equation (4.5) yields

X(p) = X(pDuyperpoLaP (Yp) + X(Y)gyy 1psg[1-P(Y,)] (4.11)

Y(Yp) = YoP(YR) + Y(Y)gyy 1psg[1-P(Y¥)] (4.12)

with the blending function P given by Equation (4.6) and v given by
Equation (4.7).
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The bottom blended surface is generated in a similar manner. In
Figure 4.3, v now varies from a specified v to n/2. The blending

function is now

V=V
) 1+C°S"('72:VT)
Plv) = 7 (4.13)
with
= (7 - yv.\(Yp-Yi , Vi <V < w/2 (4.14)
v Q? v1)(Y?:3Ff) + v i

and Y; and Yf are to be specified. The ellipse to be blended is given

by
X = -Acosvcos® - Bsinvsin® + Xgp | (4.15)
Y = -Acosvsin® + Bsinvcos® + Yp | (4.16)
with
9 = sin-l(XELL - X(v=w/2))

B . (4.17)

Again XpLL and Yg|| are calculated as in the previous chapter., The

equations generating this blended surface are then given by

X(Yp) = X0 )uyperpoLal-P(Yp)] + X(, gy 1pseP(Yp) (4.18)

and

YY) = VIIPOY)T + Y(Y))g peeP(Y)) (4.19)

Of course between the two blended surfaces the normal subreflector is

described by Equation (4.1).
Now the centers of the ellipses will be given. The normal to the

hyperbola is given by Equation (3.117) and evaluated at Y;j for the top
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edge, Then, one finds that

XELL X + YELL Y = X(Y{)X + Y{Y + Bn . (4.20)

and for the bottom edge with n evaluated at Yf is specified by

XELL X + YELL Y = X(Yg)X + Ygy + Bn (4.21)

Now the offset subreflector with two blended surfaces is completely
specified by Equations (4.18), (4.19), (4.11), (4.12), and (4.1). The
parameters that can be varied are Yj and Y¢ for the top and bottom, Vi
V¢, and the major and minor axes of both ellipses,

The design of the surfaces may proceed and a few general rules are
given here to simplify the procedure. It is convenient to use the same
values for the axes of both ellipses and fix vi at -n/2 and v¢ at .
This allows the knife surfaces to be completely removed from view of the
source. The excessive hidden surfaces on the subreflector, as well as
the main reflector later on, are removed by limiting the range over
which the curve is generated. This s in general better than
respecifying vi and v¢ which would lead to surfaces whose shape is
changed each time. In general, the larger the surfaces, the flatter the
field will be. But small surfaces are also desirable to taper this
field to reduce the effect of the triple reflected field. So a tradeoff
exists in the size of the surfaces . This size is determined by the
major axis of the ellipse as well as the length of the blended hyperbola
section (which is determined by Y; and Yf). Now the minimum radius of

curvature of the edge must be kept greater than a quarter wavelength at
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the lowest frequency of operation. Once the general size of the
surfaces is decided, the radius of curvature is determined by the minor
axis dimension of the ellipse. One final constraint is the relationship
between the major axis length and the length of the hyperbola section.
By looking at the slope or first derivative of this curve, a gradual
transition is best obtained for a hyperbola section length that is
approximately four times the major axis length. Again, this constraint
is true at vj equal to -w/2 and vf equal to =n. So when designing the
surfaces , the size for acceptable performance is the overriding
consideration. Besides the design of the surfaces, the size of the
subreflector itself is another variable., It must be large enough to
illuminate satisfactorily the main reflector yet kept as small as
possible so that interactions between the two reflectors may be
minimized.

The field produced by the subreflector will now be examined. Using
UTD and physical optics, the field along a parabolic contour is
calculated. Using a magnetic line source (Figure 4.4), one finds that

the reflected field is given by

-jkpj -jkep
JREF  _ e c e . (4.22)
/P Pcter

For the region between Yi and Yf, UREF has been calculated before with

pc = [(Lv-x)2 + y2]'/2 (4.23)

pi = [Y2 + (Fc-Lv+x)2]1/2 (4.24)

or = [(YP-Y)2 + (Fm-Lv+x-YP2/(4Fm))2]*"? (4.25)
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Figure 4.4 Field along a parabolic contour.

91




Also

YP = 2Fm [:é + /(12 +1 ] (4.26)
c

with

c= Y . (4.27)

Now the reflected field from the edges is more complicated. The

caustic distance must be recalculated using
1/pc = 1/pj + 2/(Rccos®i) . (4.28)
For a given point, pj is known from Equation (4.24). Now

Rc = |1/CURV| ' (4.29)

cuRY = — it (4.30)
= ]

Cly )2+(x )22¥/2

and the derivatives need to be taken with respect to the parameter Yp.

The derivative results for the bottom edge are as follows:

X' = X'Hyp(1-P) + Xyyp(-P') + X'gr P + Xg P (4.31)
X ay 2y-1/2 (4.32)
HYp(Yp) = 3Y(1+(y/b)<) .

b2
P YD) = - 1 i V=v{ n (4.33)
(Yp) 2‘51"["n/2-v1](vf-vi)

X'c, (Y5) = [Asinvcos® - Bcosvsing]{7/2-vi
HLLP EVF?V?"] (4.34)
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X" = Xyyp(1-P) + 2 Xyyp (-P') + Xyyp(-P*)

+ XELL P+ 2 XeLr P' + XpL P

Xqyp(Yp) = a/b2
[1+(¥/b)“3°"¢

P*(YP) = -1 cos 2

Ty vevi Tl x
n/2-vi if'ii

—n/2-v{7|2

=i

XELL(YP) = -hcosvcose + Bsinvsiné-

VOR(1P) MYp(PT) 4 ¥y P Yy P

n/2-vi—
Ye-Yq

]
YELL(YP) = (Acosvsin® + Bcosvcos8)

Y m 2P 4 Yp(PU) 4 YR P4 20p P 4 Y P, and

“n/2-vq{™
Ve-V;

2

[}
YELL(YP) = (Acosvsin®é - Bsinvcos6)

The derivative results for the top edge are as follows:
]

]
' = - -
X XHYPP + XHYPP' + XELL(I P) + XELL( P')

wuw=%mwau )

L
Ve-Yy

‘ = vf
Xe L (Yp) = (Acosvcos® + Bsinvsine)( )

=14
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(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)




" ' " [
" _ " - -p! 1
X" = XyypP * ZXHYPP' + XHYPP + XELL(I P) + ZXELL( P') + XELL( P")

(4.46)
PU(Y,) = =L cos| || 7|2
P Z Vf Yt-Yi (4.47)
X" (Yp) = (-Asinvcos® + Bcosvsino) T Vf 2
ELLY'P \e (4.48)
[} " ! 1
Y' =P+ YpP" + Yy (1-P) + Y (-P') (4.49)
' _ . — vf
YELL(YP) = (Acosvsin® - Bsinvcos8) \ran (4.50)
n 1 1] " ' ) ] B n
Y" = 2P' + YPP + YELL(I-P) + ZYELL(-P ) + YELL(-P ), and (4.51)
YELL(YP) = (-Asinvcos® + Bcosvcos9) —§%§7;7-2 . (4.52)

These derivatives provide the information necessary to compute the
radius of curvature. The normal is computed next so that cos6j may be

found. For both edges the slope is given by
m=Y/X (4.53)
and the normal has slope -1/m. For both edges the normal is given by

n = an + Yny =X + (1/m)y .

[1+1/m2]% 2 (4.54)

Now forming the dot product with the incident vector, one finds that
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;i . -éFc;kv+xlx-Yy | (4.55)
TIFELVx)2H72]T72 |

which yields

cosS ei = "Xn(FC'LV"’X)-YnY

T(Fc-Lvixy&veJrrz. (4.56)

Note that the caustic distance pc Is known. Equating the angle of
incidence with the angle of reflection allows the point YP on the

parabola to be found. So one obtains that

~

pp = -(Fm-Lv+X-YP2/(4Fm));+(YP-Y);
T(Fm-Lv#X=YPZ/{&Fm) )+ {YP-Y] Z]T7Z (4.57)

and

cos8; = ~Xn(Fm-Ly+X-(YP)%/(4Fm))+¥, (YP-Y)
[(Fm-Lv+X-YP2/ (4Fm) ) Z4(YP-Y) ZTT7Z . (4.58)

Using an iterative bisection method, YP may be found numerically. Then
the reflected field from the blended surfaces along a parabolic contour
is known, Numerically, it is convenient to pick points on the
subreflector and ray trace to the corresponding point on the parabolic
curve,

The subreflector is now analyzed using the physics optics
approximation and the results compared with the reflected field given by
geometrical optics. Again using a magnetic line source, the current on

the 1it side of the subreflector is given by

Js = 2n x Hi (4.59)

95




In Figure 4.5, Hi is z-directed and the normal n lies in the X,y-plane.

The two dimensional radiation integral is used to compute the

subreflector scattered field which is given by

jn/4 ~ N - -jkp A 4
Hz = e Jz+(t xop)gt (pjen)de
8r o
where
- .A —jkpi -~
W =Hz=0___ 2
z YPT
and
- B -~ _ .iA
JS = Jtt = 2Hzt

The slope (m) is given by Equation (4.53) and the unit tangent by

t o= tex +tyy = xtmy for m positive
Y1+m?
to=1tyx +tyy = -x-my for m negative or

Y1+mZ m positive on lower edge.
Also, one finds that
24172
]

pi = [¥? + (Fc-Lv+X)

and J¢ is then known. Now, one obtains the following:

p = [(Fm-Lv+X-(YPAR)2/(4Fm))2 + (YPAR-Y)2]'/2
S, 2 - *
X PyY . =(Fm-Lv+X-(YPAR) /(4Fm))x + (YPAR-Y)y
p
96 .

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)
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Figure 4.5 Physical optics analysis.
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Figure 4.6 Three integration regions.
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txp= (1’.)(p.y - typx)z (4.68)

z+(t x p)= tx?y'typx’ and ’ (4.69)

p; = =(Fc-Lv#x)X-Yy | (4.70)
by

The normal (;) is known from Equation (4.54) so the remaining dot
product is known in the integral. The integration is carried out over
three regions as shown in Figure 4.6. The 1it region endpoints

Li and Lf) may be found using an interative bisection technique. Once
these points are known, the integration is carried out suppressing the

leading constants. Then, the scattered field is given by
Lf -j2n(pj+o) ~ -
Hz = f‘ (txpy'typx) e (p-i ’n)de (4.71)
L /oip

or numerically

N -j2n(pj+p) ~ =
Hz = ] (typy-tyey) e (pj *n)AYp (4.72)
1 /PP

where Yp is the parameter defining the curve (or just y in the case of
the hyperbola section). This is evaluated using the trapezoidal rule
for numerical integration.

A typical subreflector is shown in Figure 4.7. The slope or first
derivative is also present to show the slope transition from the
reflector to the blended surfaces. The UTD and physical optics plots
follow. Next, a smaller subreflector is shown with the same size

surfaces (see Figure 4.8). In this case the subreflector is too small
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(a) Subrefiector with blended edges.
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(b) First derivative plot.

Figure 4.7 Subreflector with blended surfaces.
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(d) Physical optics plot.

Figure 4.7 (Continued).
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(a) Subreflector with blended surfaces.
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(b) First derivative plot.

Figure 4.8 Smaller subreflector with same
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(d) Physical optics plot.
Figure 4.8 (Continued).
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in terms of wavelengths. Finally the original size subreflector with
smaller surfaces is considered (see Figure 4.9). Again, performance
suffers and the slope transition in this last figure is much more
abrupt,

It is also helpful and convenient to look at the far field of the
subreflector using geometrical optics (GO) and moment method theory.

For GO, the far field is given by

-jkp =Jkeg
U=t c e (4.73)
P Pctps y

with the variables shown in Figure 4,10, Now pg is the far field

distance so

Pctes * ps , and (4.74)
-k pj -jkpg

V=t s . (4.75)
/o7 YPs

But this last factor is a common factor and may be ignored yielding

-Jkpj

U = e (4.76)

o
oi
at a specified angle ¢ which may be easily found from previous
calculations,

For the moment method, points are set up along the curve of the
subreflector a distance "ds" apart. The distance used was usually about
0.2 wavelengths at a particular frequency. On the blended surfaces,
"ds" was approximated as a small line segment. For the hyperbola
section (Figure 4.11), the uniform segments were found using
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(b) First derivative plot.

Figure 4.9 Original subreflector with smaller blended surfaces.

104

- Wl T eaa



2N

- R Ny W E A

Figure 4.9

-7. -6.
las

aales

-12.-14,-10. -9. -8.
5!’2 seaslaasalaaaals

T~ T —— T \
< e, 20. 30. . 0. 70. 0.

0. $0.
DISTANCE FROM CENTER

(c) Geometrical optics plot.

-42.-11.-10. -9,
gt

T T ASER I e B |

T v - T ™

30. NO. $0. 60. .
DISTANCE FROM CENTER 0 oo

(d) Physical optics plot.

(Continued).

105



Figure 4,10 Far field from subreflector.
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Figure 4.11 Moment method geometry.
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dx _  ay/b?
dy  [1+(y/b)2]1/2 (4.77)

at the bottom point and

dy = ds (4.78)
[1+(dx/dy)2]1/2 .

This dy is added to the previous y to obtain the next y from which the
corresponding x coordinate may be calculated. Once the subreflector is
represented by the point geometry spaced ds apart, the moment method
program may be run using this information to obtain far field plots.
Using the same subreflector geometries as in Figures 4.7 through 4.9,
GO and moment method far Field patterns are shown in Figures 4.12
through 4.14, The moment method analysis provides accurate results and
for the relatively small subreflector is easily and quickly implemented.
These results also show the closeness of including only the reflected
field in the UTD analysis. When these two procedures yield results that
differ greatly, then more than the reflected field is being seen, and
the design must be compensated so that it looks more like a simple
reflective surface. Once satisfactory performance (flat amplitude over
area of main reflector to be illuminated) is obtained, the design of the
main reflector may proceed.

As with the subreflector, the main reflector will consist of a
parabolic surface with two blended surfaces attached (Figure 4.15). Of

course, the parabolic section is given by

X = y2/(4Fm). (4.79)
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Figure 4,12 Field plots for geometry of Figure 4.7 (a).
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(b) Moment method plot for geometry of Figure 4.8 (a).

Figure 4.13 Field plots for geometry of Figure 4.8 (a).
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Figure 4.14 Field plots for geometry of Figure 4.9 (a).
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Figure 4,15 Main reflector with blended surfaces.

Figure 4.16 Ellipse for upper edge.

Figure 4.17 Tilted ellipse.
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Figure 4.18 Ellipse for bottom edge.

The blending function used on the top edge is

kit
cos_V
p =1+ VT 0<P<l (4.80)
Ty
where
v = vg YP-YIT 0<vV<VF . (4.81)

The ellipse in Figure (4.16) is parameterized by

XE

Asinv, and (4.82)

YE = -Bcosv . (4.83)

The normal of the parabola is given by
n = -x+(Y/2Fm) y (4.84)
[1+(Y/2Fm)“]" "¢
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so the origin of the blended ellipse is located at

-8 + VIT?

Xo, ¢ = :
ELT [1+(;;[)‘]172’ TFm- , and (4.85)
m .

B(YIT)
Y = 2Fm + YIT. (4.86)

ELT 717
1+(YIT L7z
. +L?ﬁi) ]

The angle of the main axis of the ellipse is now tilted (Figure 4.17)

and given by

2
6 = sin-1 [YIT /(gFM)-XELT] (4.87)

so that the elliptical curve is generated by

>
n

Asinvcos @ + Bcosvsino+Xgy T (4.88)

and

-<
n

Asinvsin® - Bcosvcos® + Yp T . (4.89)

Finally the top blended surface is generated by

X = (Yp2 ; ; - 4.90
(ZFEJP + (Asinvcos® + Bcosvsing + Xg ) (1-P) ( )

and
Y = YpP + (Asinvsin® - Bcosvcos® + YELT) (1-P) (4.91)

where Yp is a parameter that varies between YIT and YFT.

For the bottom surface, the ellipse (Figure 4.18) is parameterized

by

XE = -Acosv (4.92)
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and

YE = -Bsinv . (4.93)

The origin of the ellipse in this case is at

X = -B + YFBZ
ELB [1+(YFB)£]1/£ m (4.94)
2Fm
and
B(YFB)
Y = 2Fm + YFB . (4.95)
ELB [1+ (YFB)Y]J./L
ZFm
The tilt angle of the ellipse is
-1 (YFBZ/(4Fm)-X 96
6 = sin [ 5 ELB] (40 )
and the ellipse curve is given by
X = -Acosvcos® + Bsinvsin® + Xg g , and (4.97)
Y = -Acosvsin® - Bsinvcos® + Ypig . (4.98)
The blending function for this surface is
V-V.i
P = l+cosm| n/2-v; 0< P <1 (4.99)
2
with
- Yp-YIB ; (4.100)
v = (/2 - v, +y., Vi Sv <Tn/2 .
(12 = v3) (g *s

Then the bottom blended edge is generated by
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2
Yp
X = (ZFEJ (1-P)+(-Acosvcos8 + Bsinvsing + Xerp)P (4.101)
and
Y = Yp(1-P) + (-Acosvsine - Bsinvcos® + Yp g)P . (4.102)

The entire main reflector surface may now be generated. As in the
case of the subreflector, larger surfaces lead to flatter field
performance. This overall size is determined by the major axis length
plus the parabolic section length blended together. The parabolic
section length is determined by (YIT,YFT) and (YIB,YFB) for the top and
bottom surfaces , respectively. The minimum radius of curvature of the
surface is determined by the minor axis dimension, and this is kept
greater than a quarter of wavelength at the lowest frequency of
operation. A final rule of thumb is to make the length of the parabolic
section about four times longer than the major axis of the ellipse in
order to make the slope transition from the parabola to the blended
surface as gradual as possible. As in the subreflector case, vi is
fixed at -n/2, and v¢ is fixed at =, This assures that the surface
extends well into the back area of the reflector. Since much of this
blended surface is excessive, some of it may be eliminated by
controlling the range over which the total reflector is generated. This
is easier to implement than changing the variables which govern the
shape of the curve which would result in a different surface design.

With the geometry given, the field in the plane of interest or

target area may now be calculated. The main reflector is analyzed alone
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by placing the source at the virtual feed. The moment method procedure
and GO are used to analyze the main reflector, First, the moment method
is used to consider some special cases.

In Figure 4.19, a typical reflector with sharp edges is shown, The
moment method plot follows. The ripple may be greatly reduced by
attaching elliptic rolled surfaces with no blending involved as in
Figure 4.20, Now using a linear blending function of the form v/v¢
instead of the cosine function described earlier, the field plot in
Figure 4,21 shows even more improvement. A parabolic blending function
of the form (v/v¢)2 is considered next. The improvement of the field in
this case is shown in Figure 4,22, Finally, the original cosine
blending function is used as shown in Figure 4.23. It and the parabolic
blending show similar results. The cosine blending is chosen since it
gives the best results and also does a good job of shaping the surfaces
in the back region. The distance to the target area or plane of
interest is also a variable, and care must be taken in choosing this
distance., If the observation plane is too close to the reflector, one
is limited by the feed position. If the plane is moved too far away
from the reflector, far field effects become apparent, and the plane
wave gradually becomes more and more tapered. These effects are shown
in Figure 4,24 for various observation plane distances where "DISPLN" is
referenced to zero at the virtual feed. The case for DISPLN = 0 is

shown already in Figure 4.23b,
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The GO reflected field for the main reflector will now be
calculated (see Figure 4.25). 1In the parabolic region, the reflected

field is given by

-jk(pj+
e J (01 Dr)

REF-e (4.103)
i
with
o, = [(Fn-x) 2222 (4.104)
op = Fm + DISPLN-X, and (4.105)
YPLN = Y , (4.106)

For the top and bottom blended surfaces, the reflected field is

-jkpy -jkop
yREF _ e c e (4.107)
Vo7 Pctpor
with
_1_ = _1__ + 2
pc  pi Rccos6; (4.108)

and pj as before. To calcualte R. and cos®j, the partial derivatives

with respect to Yp must be found. For the bottom surface, one finds the

following:

] 1
X" = Xoppal1=P) + Xppa(=P*) + Xg) | P + Xp, P (4.109)
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' oy
Xparal¥P) = b

P'(Yp) = -}Zsin[w(%)](m)

! . . 2=vi
XELL(Yp) = [Asinvcos® + Bcosvs1ne](;{,B__T%§)

X =X

(1-P) + 2Xpppa(-P') + Xppoa(-P*)

PARA

N 2
P"(Y =1 cos V=Vj b
( p) z “(n72-v1) YFB-YIP
o R B L
AELL = LACOSVCOSH - BSInvsSIno] /

B-VI .

]
Y' = (1-P) + Yp(-P') + YeL P o+ Y P

LL ELL

' - eing n/2-v;
Yo  (YP) = (Asinvsine BCOSVCOSG)(YFﬁ:YT§]
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(4.110)

(4.111)

(4.112)

(4.113)

(4.114)

(4.115)

(4.116)

(4.117)

(4.118)



L] !

(4.119)
- -2
Y"  (Yp) = [Acosvsine + Bsinvcose]| /2-Vi
e (Ye) =T N v | - (4.120)
For the top surface, one obtains the following:
1 — [} [} t 1
X' = XoppaP * XppraP" *+ Xg (1-P) + Xy (-P) (4.121)
Pt = -l sinf[mV](__T )
2 Ve VFT-VIT (4.122)
X' . = (Acosvcost - Bsinvsing)(__Vf
ELL - Nerovry) (4.123)
X" = XonraP * ZXoapal + Xpapa®
1] _ [ _p! _pn 4.124
+Xg  (1=P) + 2XE | (-P') + Xgyy (-P") ( )
P*(Yp) = =L cos [TV]| _ T _ T 2
7 ve | VFT-VIT _ (4.125)
XELL(YP) = (Asinvcos® - Vcosvsin®) vf 2
- ! ! - _p! 4,127
YU =P VPP 4 YR (1-P) + Yy (-P) ( )
Y' (Yp) = (Acosvsing + Bsinvcoso)(__VYf
ELL (——YFT-YIT) (4.128)
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Y= 2Pt 4 YoP" + YR (1-P) + 2YE  (<P') + Yp (-P") , and (4.

ELL

B = (-Asinvsine + Bcosvcos8)(_vf )2

YFT-VIT . (4.

From elementary calculus, the position vector is given by

F=x;+y§ (4.
with

F' = x'x +y'y, and (4.

g | |2 |212

7] = L)%+ vale (.

Also, the unit vector is

129)

130)

131)

132)

133)

~ T x'x +y'y
t = |F'| = [('y')l+(y')£]1rz (4.138)
and
” " " [ " " 2 - " n " " 2 2.-1
poox [X"=xt (x x4y 'y ) [(x") +y")?] 1]+y[y -y (x' x4y y")D(x") "+ (y") 1]
[(X')""(y.)‘]l,‘ .
(4.135)
Cimallw
gl iy
=t (4.136)
Ir]
The radius of curvature is given by
R =1
S 19 (4.137)
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and the outward facing normal by

n ="K _ (4.138)

|
The dot product with the incident vector

-

(Fm-x)x-y§

Ps
1 =
[(Fm-x) 4y “]""* (4.139)
may then be formed yielding
CoS6j = pj°n (4.140)

and the caustic distance p; is known.

The reflected field is solved completely when YPLN and pp are

known. First, one obtains that

pr = [(Fm + DISPLN - x)Z + (YPLN - y)?71/2

For the bottom edge (see Figure 4.26), one finds that

|

and

%2

The normal is always outward facing so if a > m/2 then subtract ay from

7 to get desired . Then, one obtains that

TAN(a1+2a2) = (Fm + DISPN - x)/(y-YPLN) (4.148)

or

129

. (4.141)

AN L ((Fm=x)/y) (4.142)

cos™H(cose) . (4.143)
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Figure 4.26 Bottom and top reflection points.
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YPLN = -(Fm + DISPN - x)/TAN(0; + 2a)) +y (4.145)

Similarly for the top surface, one obtains that

TAN(u1 + 2a2 - w/2) = (YPLN - y)/(Fm + DISPN - x) (4.146)

or

YPLN = (Fm + DISPN - x) TAN(a, + 2a, - #/2) +y . (4.147)

The reflected field for the surfaces is then given by Equation (4.107).

In Figure 4.27, a typical main reflector is shown. The slope or
first derivative is also present to show the slope transition from the
reflector to the blended surfaces. The GO and moment method plots
follow. Next, smaller surfaces are attached (Figure 4.28) and the
degradation in the field is apparent. The GO plot is not as greatly
affected since it only contains the reflected field components. Larger
surfaces will result in flatter field performance, but a tradeoff must
be made between edge size and field performance. Once the field is
acceptable, the surfaces should no£ be increased further in order to
keep the triple reflected field to a minimum.

The total system may now be put together. The subreflector and
main reflector have been analyzed separately, and there is little
further design that can be done at this stage. The offset between the
reflectors should be as large as possible, and the blended surfaces have
been made as small as possible to reduce the triple reflected field

without sacrificing flat field performance.
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Figure 4,27 Parabolic reflector with blended surfaces.
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Moment method and GO analysis are used for the entire system and

the GO reflected field for the entire system will be examined first.

In Figure 4,29, the reflected field from the subreflector that does not

interact with the blended surfaces is given by

-3k (pj+ppr1+ppr2)

uREF - V/ Pcl e
Pi (pc1tor1)
with
2 2.1/2
ocq = [(Lvx)? + y 22"
and
p; = [(Fc-Lv+xs)2+ y52]1/2 .

Now yn and yg are related by

Ym = Fpl-1/c + V1/cZ + 1)
where
c = Ys .
[V'XS

Also, one finds that

211ACm\
A SOty

2
~m Jm

Fm + DISPN - xp

©

-
~N
1]

YoB =¥m » and

2
pr1 = [(Fm-Lv4xg=xp) + (yp-ys) 1 .
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Points on the subreflector are then chosen and rays traced. The
hyperbola section of the subreflector reflects rays that also extend
outside the parabolic section of the main reflector. The reflection
point on these surfaces must be found differently.

The reflected fields for the top and bottom surfaces in Figure 4.30

are given by

REF e-jkpi e-jkpr1 e.'jkpr‘2
U = / Pcl / Pc2
/5 pc1terl Pc2+Pr2 (4.157)
or
-jk(pi+ppr1+er2)
uREF _ — e LT
pi (ec1*or1) (pc2+or2) (4,158)
and
2 2.1/2
pi = [(Fe-Lv+xs) + ys ] / (4.159)

where xg and yg are chosen on the subreflector, There are two

possibilities for pc1. If (Xs,Yg) is on the hyperbola section then

2 2
pcl = [(Lv-xg) + ys 1 (4.160)

Otherwise, pc] for the surface s is given by Equation (4.28) and those
that follow it. The reflection point on the main reflector must now be

found, For (Xg,Yg) on the hyperbola, one obtains

s, (a/b2)¥s N
-~ ~ ~ - X
Ny =nx+ny = [1+(Ys/b)2]1/2 4
X vy — (4.161)
(a/bZ)ys —]2 1/2 .
L+ ) Tie(ys/p) 23172
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In the subreflector section, cos®; was calculated such that

Y ~

cos8; =ny-ory . (4.162)
and
Pr1 = '(Fm'Lv+yS'¥m);+(meYs); (4.163)
Prl
where
g = [(FmeLyaxsom)®s (yeys) 221/ (4.164)

for a given parameter Yp for the main reflector. The reflection point
(XmsYm) is then found using a bisection routine to solve for Yp. For
the blended surfaces, the normal was calculated in the subreflector
section, and the reflection point is found in a similar manner. The
normal for the main reflector was also previously calculated, and the

incident vector is

-~ -

Pi = =Pp1 (4.165)

So, one finds that

- A

€os8; = p;en, (4.166)

and Ppr2 and YOB may be calculated as in the main reflector section.

Finally, the caustic distance is given by

1142

Pc2 i RcCos 85 (4.167)
with

e S B | (4.168)
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and R, was calculated previously. Then UREF is known through selecting
points on the subreflector and implementing the above ray tracing
procedure,

In the moment method procedure, the entire system is represented by
a geometry of points spaced a variable distance apart. This distance is
usually fixed at two-tenths wavelengths for best results. Now the
moment method is applied to the entire system (Figure 4,31) and the plot
in Figure 4.32 results. The magnetic line source also reflects off the
main reflector into the target area, and this field is subtracted
yielding Figure 4.33. Next the spillover incident field and the direct
reflected field off the subreflector edge are subracted out yielding
Figure 4,34, The triple reflected field ripple is apparent as well as a
slow varying ripple caused by successive reflections from the
subreflector edge, the main reflector edge, the subreflector hyperbolic
area, and the main reflector parabolic area. Of course in an actual
system, this field component is not seen by using a pulsed radar system.
Finally, by selectively zeroing the correct elements in the impedance
matrix, the interaction between the main reflector and subreflector is
eliminated resulting in Figure 4.35 where the slow and fast ripple have
been eliminated. The corresponding GO plot is shown in Figure 4.36.

GO may also be used to calculate the triple reflected field level
since all the basic analysis has already been completed (see Figure
4.37). First % is recalculated and (xg,ys) found on the subreflector
using a bisection method. Then P.o is known. The normal is computed at
(xg,¥g) and another bisection method to find YOB. This yields Pp3 and
Pc which may also be calculated at this point.
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Then

-jker3

] =V
AT C e .
SUB v ‘oc*pp3 : (4.169)

A plot of this field is shown in Figure 4,38, The level of this field

is plotted relative to the reflected field magnitude in the center of
the target zone. The triple reflected field is actually higher than
that which would be given by the maximum level in Figure 4.38, This
could be remedied by using a more accurate value for the reflection
coefficient when computing the triple reflected field.

At this point, little else can be done about the triple reflected
field without sacrificing the desired flat field performance. One
alternative is to place microwave absorber in the vicinity of the
subrefiector to block the ray path of the triple reflected field from
the subreflector to the target area. This improvement could be easily
implemented. In actuality, the triple reflected field will be weaker in
a three-dimensional system in that additional spread factors will reduce
the triple reflected field even further,

Finally, the source horn is placed at the "origin" for convenience
as well as ontimal performance, Ease in changing horns and horn
orientation and the close proximity of radar components make this an
ideal location. A typical broadband horn gives the desired flat field
over angles much greater than those considered here. If possible, a
field taper is desired over the blended surfaces which will improve

system performance but the major purpose of the horn is flat, broadband

performance over the widest possible angles.
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CHAPTER V
CASSEGRAIN SYSTEM DESIGN PROCEDURE

The Cassegrain system is a viable alternative for providing a
uniform plane wave in a compact range measurement system. A procedure
will be described briefly for designing a Cassegrain system given a
target area dimension as a constraint. No further constraints will be
given but in actuality each individual application will have its own
unique restrictions,

The system described in Chapter IV will be used as an example; that
is to say the target area is to have a dimension of six feet. The main
reflector is considered first. It is convenient to make the vertical
dimension the same six feet. Increasing this dimension will flatten the
field when just considering the main reflector, but this will result in
a larger overall size leading to an increased triple reflected field.
Therefore, the main reflector is kept as small as possible to keep the

PR 1
L

1
ripie 1 length

oca
chosen to be approximately three times the target dimension. Care must
be taken to make sure the target plane is not in the far field of the
main reflector at the minimum frequency of operation. For this

particular case, the focal length was chosen to be twenty feet.
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The edges of the main reflector must be considered next. Only the
field of the main reflector (source at virtual focal point) is examined.
The three blended surface variables are the major axis length, minor
axis length and blended parabolic section length. The blended parabolic
section is fixed at four times the major axis length for the most
effective transition from the parabola to the blended surface . The
major axis length should be increased until the field over the target
area is flat. The natural taper of the field will also be present.

Some rounding of the field at the junctions will be tolerable since the
subreflector field is usually tapered and will compensate for this
problem resulting in a smooth field at the junctions. Finally the minor
axis length is usually one-third to two-thirds the major axis length.
The actual length is set such that the minimum radius of curvature of
the edge is greater than a quarter wavelength at the lowest frequency of
operation. The rounding of the field at the junctions for this case had
a 0.1 dB to 0.2 dB variation as is seen in Figure 4.27d of the previous
chapter.

The subreflector is designed next. The goal is to generate a
uniform field illuminating the parabolic section of the main reflector
with a subreflector whose overall dimensions are kept as small as
possible to reduce field interactions between the two reflectors. One
parameter that determines the size is ¢.. For this example a value of
five degrees was chosen. The blended surfaces are added next
following the same procedure as with the main reflector. The far field

pattern is then examined and a half dB variation over the area to be
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illuminated is tolerable. In Figure 4.12b the subreflector field plot
is shown and the desired illumination area is from 135° to 150° for this
particular example. If the field variation is not acceptable, the size
of the blended surfaces may be increased, If a flatter field is not
obtained, the size of the hyperbolic reflector section must be
increased, and the addition of the blended edges repeated until a
satisfactory pattern is obtained.

The total system may then be put together, and the resulting
pattern examined. The feed is placed beneath the main reflector at the
"origin"., Although the feed could be placed somewhere between the
reflectors, this location is most operationally convenient and gives
good source performance since the beamwidth is smaller and field flatter
at this increased distance. The system is now completely specified, and
little further design may be done except for varying the offset angle
between the two reflectors. Increasing this offset angle without
altering the rest of the system should reduce the triple reflected
field. The interaction between the blended surfaces of the reflectors
now results in weaker reflected fields at each edge yielding an overall
reduced triple reflected field. This also changes the desired field
pattern somewhat.since the positioning of the hyperbolic subreflector
and parabolic main reflector has changed. This change usually does not
affect the desired pattern greatly but the triple reflected field is
reduced. Therefore, the ideal situation is to have a maximum offset

angle to reduce the triple reflected field making sure that the desired

field over the target area remains acceptable.
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For this example, consider three cases with offset angles of 35°,
45°, and 55°. A system with ¢, = 35° is shown in Figure 5.1. The
minimum triple reflected field from Figure 5.2 is about 1;6 dB. The
desired reflected field with interactions between reflectors eliminated
is shown in Figure 5.3. Within the six foot target area there is about
0.5 dB rolloff at the extremes. There is about 0.2 dB variation over
4.8 feet of the area. The next case in Figure 5.4 has ¢, = 45° and was
the system considered in the previous chapter. At this angle the triple
reflected field is reduced to about 0.9 dB (see Figure 5.5). The
desired reflected field has a 0.4 dB rolloff within the six foot area
and 0.2 dB variation over 5.4 feet (see Figure 5.6). The final case has
¢y = 55° as shown in Figure 5.7, The triple reflected field has now
been reduced to a level of 0.6 dB (see Figure 5.8). This change of 0.3
dB is not as great as the reduction between the angles of 35° and 45°
which implies diminishing returns with increasing angles. The desired
reflected field has less than 0.4 dB rolloff within the six foot target
area, And 0.2 dB variation over 5.4 feet as shown in Figure 5.9,
Therefore, a maximum offset angle is desired but this must be tailored
to each individual case. Note that the polarization performance will
deteriorate with increasing tilt angle for a full three-dimensional

system.
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CHAPTER VI
CONCLUSIONS

In conclusion, the Cassegrain system will provide a uniform plane
wave but the triple reflected field ripple must be reduced through
judicious design and absorber blocking. The blended edges provide
superior performance over large target areas for a given size reflector
system. Design and analysis is best implemented by studying the main
reflector and subreflector separately. Then the system may be put
together to complete the analysis.

Different techniques were used to study the system. The moment
method provides accurate results but is limited by structure size and
computational speed. Though difficult to implement in some situations,
UTD provides results which compare favorably with moment method even
when just examining the reflected field. UTD is also fast and usable on

large structures. Both these techniques are best utilized by examining
each reflector spearately before combining and checking the total
system,

With the two reflector system, the elimination of undesired field
components becomes the prime consideration. Those field components
which have pathlengths that differ greatly from the desired reflected
field pathlength may be eliminated through time gating with the use of a

pulsed radar system. The triple reflected field component does have a
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similar pathlength to the desired reflected field and must be reduced
through careful design of the two reflector system. If
three-dimensional effects were also considered, the apparént level of
this field would be reduced further. Absorber blocking around the
subreflector would also reduce the triple reflected field at the expense
of introducing diffracted components from the absorber. The diffracted
fields from all blended surface junctions have been virtually eliminated
through the blending process.

This report is not a complete study of this topic, but it serves to
illustrate the potential benefits and problem areas associated with
subreflector compact range systems. Further work is needed for
three-dimensional structures in order to give additional insight into
the working of the system as well as give improved accuracy in the area
of several field components. The blending procedure implemented is new
and various blending functions as well as different blending processes
provide additional possibilities for system enhancement. The diffracted
field at the blended surface junction, though not considered here, is
another area of potential analysis. Other Cassegrain reflector system
configurations are possible including the isolation of one reflector
from the other in separate areas to reduce the interaction between the
two. Finally, the actual physical construction and implementation of a
Cassegrain reflector system would provide the final verification of the

analysis and design.
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APPENDIX A
REFLECTION POINT ON MAIN REFLECTOR

This appendix describes how the reflection point on the main
reflector is found. Knowing that the angle of incidence equals the
angle of reflection, a point, (Xy,Yg) is initially chosen on the

parabola (see Figure A.1). Now the normal is given by

N Xy . (A.1)
(1 +%;z)l/£

A new coordinate system is formed at "0" (see Figure A.2). R is

the radius of curvature and given by
, 372
R =2f(1+Y (A.2)
(1+3)

so "0" is located at

Xor = %o * 26(1 + };7) (A.3)

and

Yor = Yo - (1+ {.:_[)y . (A.2)

Working in this new coordinate system, move A4 and assume R remains the

same for this small change. Now

COS6; = COSOp
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Figure A.1 Initial reflection point.

(xo.yo)

~>

oLD

x>

Figure A.2 New coordinate system.
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or

Nnei=noer (A.5)
and .

i= (x'; + y'f) - ;RCOSA¢ - yRsina¢ ,

r= ;(x" - RcosAg) + ;(y“ - Rsinag)
and

n = -(;cosA¢ + §sinA¢).

Now as A¢ » O, cosA¢ + 1 and sinA¢ + Ad. So

—iq

= x(x'-R) + y(y'-Ra¢),

= X(x"R) + y(y"-Ra¢),

-3

and

= =(x+yAd).

S

So Equation (A.5) simplifies (ignoring second order terms, (A¢)2) to

ap = ORI R) 54y 23 R 2L R) 2 (v

[ ’ L 2 "y 2. n ' 2 ' w_ 2_2 "_R ",
2(x'=R)y'[(x"-R)2+(y")2]-2y"R(x"-R)2+2y 'R (x [?l,_R§§+(y2{2]

(A.6)

Now moving from this nearby point to a point actually on the reflector,

the error is computed as follows:

€ = ONew INEWNEW "NEW (A.7)
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The reflection point is found when the error is below some prescribed
value, Otherwise, the procedure is repeated until the minimum error is
obtained.

For convenience, the point actually on the reflector is shown in

Figure A.3 and given by

YP = YOR + Rsin(A¢+a)
and
X, = Y.2/(4f)
P Tp
where
a = TAN-1(Yy/2f) (A.8)
(RcosA¢, RsinA )
NEW NEW
(xo n H
‘(X ' Y )
y PLANE
NEW
9oLp (‘on'yon)
( KNOWN
IN OLD)

)
XoLo

Figure A.3 Actual point on reflector.
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Then
- : _Yp ’
"NEW = X ??'y ’
T+ Yp2/aF 2172
Tnew = X*oLp = %poLn?* * W'oLp = Ypop)y
and

Pnew = (X" - *pown?* * (Yoo - YpoLp)Y-

The subscript "OLD" refers to the original coordinate system. The error

is then given by Equation (A.7) as

i 1 1
E = —
YPOLDZ, T72 s 7 = ~
1+ 2 "(X*otp = Xporn?* * (Moo = Yeorp)

Y
' POLD)
(oo = *eoLo = oo = YpoLD)—r— -
1 e ———— —
W _ V] " RV
"o = *poro?* * (Morp - Yporo)
" - - (y" - YPOLD .
(oo = *poro = (oo = YeoLp =)

(A.9)

Finally, the points (x',y') and (x",y") need to be transformed to

the new coordinate system as follows (see Figure A.4):

X'nNew = (Xop = X'gppleosa - (ygp = ¥'g p)sina
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(a) (x',y') coordinate transformation.

(b) (x",y") coordinate transformation.

Figure A.4 Coordinate system transformation.
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Y'new = “Llxgp = x'grp)sine + (ygp - ¥'g plcosal (A.11)
and
X“New = (VoLp - Yor)sina - (x"g p = Xgp)cosa : (A.12)
Y'New = (YoLpYor)cose + (x"g p - Xgg)sina . (A.13)
Another method of proceeding is to take the cross product
ixn=nxr
and form
R
ixn nxr
or
(n «)(nxr)=(n+r)xn)
or

(n « T)(n x 7)

(n « )T xn) . (A.14)

Using the small argument forms of 1, r, and 5, Equation (A.14) yields

A¢ = yl(xll_R) + yll(xl_R) (A.15)

when ignoring second order terms. Equation (A.15) may be used as an

alternative to Equation (A.6).
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APPENDIX B
REFLECTION POINT ON ELLIPTICAL EDGE OF SUBREFLECTOR

This appendix describes how the reflection point on the elliptical
rolled edge of the subreflector is found. In Figure B.1 point (s,t) is

known and the normal to the surface of the ellipse is given by

N = XX *+¥YoY - Bcosvcos® - Asinvsin® x 4+ Bcosvsin® + Asinvcos8 y .
[B2cos2v+A2sin2y]1/2 [B2cos2v+A2sin2y]1/2
(B.1)

The dot product is then formed

Ten_Fon, (8.2)

—_r =

17 Ir

with

T=x+fy, (8.3)
and

r=-x. (8.4)
Now at point (s,t),

t =fstg or g =t-fs
SO

y = f(x=s) +t
or

f -_—Z:_t_ (Bos)

X=S

where for the ellipse

y = Asineécosv + Bcosesinv + Y (B.6)
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and

x = Acosvcos® - Bsinvsin® + Xg . (B.7)

to find v which gives the reflection point, an initial guess is made.
From Equation (B.5) f is calculated and then the dot product in Equation

(B,2) calculated. The difference is formed

en _r en (B.8)
17| I*

r

ERROR =

and is this behaves nicely, v may be found by successively bisecting the
v interval until the desired error tolerance is obtained. Once v and
the reflection point are known, remaining parameters may easily be

calculated which finally yield the desired field.

(s,t)

y=dx+e
d=0

Figure B.1 Reflection point on elliptical rolled edge.
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APPENDIX C
MODIFICATIONS FOR VARIABLE DISTANCE TO PLANE

When making the plane of interest a variable distance (see Figure
C.1), the following modifications must be done, For the reflected
field, ppp2 becomes pp2 + DISPLN, For the diffracted field from the main

reflector rolled edge junction, p must be recalculated. First

_ -1, Dm/2 c.1
6. = cos " ( __EJ , (C.1)
1
’r1 * ¢
= tan-1 (DISPLN (C.2)
8, = tan™" ( .
2 7T
and
o= [(py + p0)? + Y(1)% DISPLNZ - 2(0E; + oE)(Y(1)2+ DISPLN?)L/2
1
cos(8; + 6)1/2, (C.3)
Now
B = ¢-¢' (C.4)
or
B = cos-1 |-y(1)Z-DISPLNZ+ o2 4 (oF, + o2
: - . (C.4)
2
| o(or1 *+ e I
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Next

B = ¢+’
and
o, = 1/2 sin™l(_Dm/2 )
pr1+°c
and
¢' = w/2 - 6.
So |
8" = 20" + (4-4')
or
Bt = w - sin'l( Dm/2 ) + g7, (C.5)
pr‘1+pc

For the diffracted field from the subreflector edge junction,

x" = Fm + DISPLN,
OLD

Finally for the triple reflected field, s goes to Lv + DISPLN,

DM/ 2 e — 3 — P
: 295 y(I)

E
e g

pE

N 8, 8,
|- F - -
m DISPLN

Figure C.1 Variable distance to plane.
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