119 research outputs found
The Eps8/IRSp53/VASP Network Differentially Controls Actin Capping and Bundling in Filopodia Formation
There is a body of literature that describes the geometry and the physics of filopodia using either stochastic models or partial differential equations and elasticity and coarse-grained theory. Comparatively, there is a paucity of models focusing on the regulation of the network of proteins that control the formation of different actin structures. Using a combination of in-vivo and in-vitro experiments together with a system of ordinary differential equations, we focused on a small number of well-characterized, interacting molecules involved in actin-dependent filopodia formation: the actin remodeler Eps8, whose capping and bundling activities are a function of its ligands, Abi-1 and IRSp53, respectively; VASP and Capping Protein (CP), which exert antagonistic functions in controlling filament elongation. The model emphasizes the essential role of complexes that contain the membrane deforming protein IRSp53, in the process of filopodia initiation. This model accurately accounted for all observations, including a seemingly paradoxical result whereby genetic removal of Eps8 reduced filopodia in HeLa, but increased them in hippocampal neurons, and generated quantitative predictions, which were experimentally verified. The model further permitted us to explain how filopodia are generated in different cellular contexts, depending on the dynamic interaction established by Eps8, IRSp53 and VASP with actin filaments, thus revealing an unexpected plasticity of the signaling network that governs the multifunctional activities of its components in the formation of filopodia
Force-Velocity Measurements of a Few Growing Actin Filaments
The authors propose a new mechanism for actin-based force generation based on results using chains of actin-grafted magnetic colloids
VASP is a processive actin polymerase that requires monomeric actin for barbed end association
Visualization of VASP tetramers interacting with static and growing actin filaments in vitro by TIRF microscopy leads to a new model for VASP-mediated actin filament assembly
Eps8 Regulates Axonal Filopodia in Hippocampal Neurons in Response to Brain-Derived Neurotrophic Factor (BDNF)
A novel signaling cascade controlling actin polymerization in response to extracellular signals regulates filopodia formation and likely also neuronal synapse formation
Fluorescent Labeling of SNAP-Tagged Proteins in Cells
One of the most prominent self-labeling tags is SNAP-tag. It is an in vitro evolution product of the human DNA repair protein O6 -alkylguanine-DNA alkyltransferase (hAGT) that reacts specifically with benzylguanine (BG) and benzylchloropyrimidine (CP) derivatives, leading to covalent labeling of SNAP-tag with a synthetic probe (Gronemeyer et al., Protein Eng Des Sel 19:309–316, 2006; Curr Opin Biotechnol 16:453–458, 2005; Keppler et al., Nat Biotechnol 21:86–89, 2003; Proc Natl Acad Sci U S A 101:9955– 9959, 2004). SNAP-tag is well suited for the analysis and quantification of fused target protein using fluorescence microscopy techniques. It provides a simple, robust, and versatile approach to the imaging of fusion proteins under a wide range of experimental conditions. © Springer Science+Business Media New York 2015
Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India
CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP
Arp2/3 complex interactions and actin network turnover in lamellipodia
Cell migration is initiated by lamellipodia-membrane-enclosed sheets of cytoplasm containing densely packed actin filament networks. Although the molecular details of network turnover remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 complex and its activator WAVE complex. Here, we combine fluorescence recovery after photobleaching (FRAP) of different lamellipodial components with a new method of data analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at sites coincident with WAVE complex accumulation. Capping protein likewise showed a turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, cortactin - another prominent Arp2/3 complex regulator - and ADF/cofilin - previously implicated in driving both filament nucleation and disassembly - were rapidly exchanged throughout the lamellipodium. These results suggest that Arp2/3- and WAVE complex-driven actin filament nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and cofilin. Network turnover is additionally regulated by the spatially segregated activities of capping protein at the tip and cofilin throughout the mes
α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3
- …
