247 research outputs found
Low-momentum interactions in three- and four-nucleon scattering
Low momentum two-nucleon interactions obtained with the renormalization group
method and the similarity renormalization group method are used to study the
cutoff dependence of low energy 3N and 4N scattering observables. The residual
cutoff dependence arises from omitted short-ranged 3N (and higher) forces that
are induced by the renormalization group transformations, and may help to
estimate the sensitivity of various 3N and 4N scattering observables to
short-ranged many-body forces.Comment: 5 pages, 8 figures, to be published in Phys. Rev.
Recommended from our members
The impact of monsoon intraseasonal variability on renewable power generation in India
India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency’s New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer.
This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterised by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterised by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources).
This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in conventional facilities will face additional weather-volatility through the monsoonal impact on the length and frequency of production periods (i.e. their load-duration curves)
Effective theories of scattering with an attractive inverse-square potential and the three-body problem
A distorted-wave version of the renormalisation group is applied to
scattering by an inverse-square potential and to three-body systems. In
attractive three-body systems, the short-distance wave function satisfies a
Schroedinger equation with an attractive inverse-square potential, as shown by
Efimov. The resulting oscillatory behaviour controls the renormalisation of the
three-body interactions, with the renormalisation-group flow tending to a limit
cycle as the cut-off is lowered. The approach used here leads to single-valued
potentials with discontinuities as the bound states are cut off. The
perturbations around the cycle start with a marginal term whose effect is
simply to change the phase of the short-distance oscillations, or the
self-adjoint extension of the singular Hamiltonian. The full power counting in
terms of the energy and two-body scattering length is constructed for
short-range three-body forces.Comment: 19 pages (RevTeX), 2 figure
Recommended from our members
The relationship between wind power, electricity demand and winter weather patterns in Great Britain
Wind power generation in Great Britain has increased markedly in recent years. However due to its intermittency its ability to provide power during periods of high electricity demand has been questioned. Here we characterise the winter relationship between electricity demand and the availability of wind power. Although a wide range of wind power capacity factors is seen for a given demand, the average capacity factor reduces by a third between low and high demand. However, during the highest demand average wind power increases again, due to strengthening easterly winds. The nature of the weather patterns affecting Great Britain are responsible for this relationship. High demand is driven by a range of high pressure weather types, each giving cold conditions, but variable wind power availability. Offshore wind power is sustained at higher levels and offers a more secure supply compared to that onshore. However, during high demand periods in Great Britain neighbouring countries may struggle to provide additional capacity due to concurrent low temperatures and low wind power availability
Recommended from our members
Quantifying the increasing sensitivity of power systems to climate variability
Large quantities of weather-dependent renewable energy generation are expected in power systems under climate change mitigation policies, yet little attention has been given to the impact of long term climate variability. By combining state-ofthe-art multi-decadal meteorological records with a parsimonious representation of a power system, this study characterises the impact of year-to-year climate variability on multiple aspects of the power system of Great Britain (including coal, gas and
nuclear generation), demonstrating why multi-decadal approaches are necessary. All aspects of the example system are impacted by inter-annual climate variability, with the impacts being most pronounced for baseload generation. The impacts of inter-annual climate variability increase in a 2025 wind-power scenario, with a 4-fold increase in
the inter-annual range of operating hours for baseload such as nuclear. The impacts on peak load and peaking-plant are comparably small. Less than 10 years of power supply and demand data are shown to be insuffcient for providing robust power system planning guidance. This suggests renewable integration studies - widely used in policy, investment and system design - should adopt a more robust approach to climate characterisation
Importance subsampling: Improving power system planning under climate-based uncertainty
Recent studies indicate that the effects of inter-annual climate-based variability in power system planning are significant and that long samples of demand & weather data (spanning multiple decades) should be considered. At the same time, modelling renewable generation such as solar and wind requires high temporal resolution to capture fluctuations in output levels. In many realistic power system models, using long samples at high temporal resolution is computationally unfeasible. This paper introduces a novel subsampling approach, referred to as importance subsampling, allowing the use of multiple decades of demand & weather data in power system planning models at reduced computational cost. The methodology can be applied in a wide class of optimisation-based power system simulations. A test case is performed on a model of the United Kingdom created using the open-source modelling framework Calliope and 36 years of hourly demand and wind data. Standard data reduction approaches such as using individual years or clustering into representative days lead to significant errors in estimates of optimal system design. Furthermore, the resultant power systems lead to supply capacity shortages, raising questions of generation capacity adequacy. In contrast, importance subsampling leads to accurate estimates of optimal system design at greatly reduced computational cost, with resultant power systems able to meet demand across all 36 years of demand & weather scenarios
Flood magnitude-frequency and lithologic control on bedrock river incision in post-orogenic terrain
Mixed bedrock-alluvial rivers - bedrock channels lined with a discontinuous alluvial cover - are key agents in the shaping of mountain belt topography by bedrock fluvial incision. Whereas much research focuses upon the erosional dynamics of such rivers in the context of rapidly uplifting orogenic landscapes, the present study investigates river incision processes in a post-orogenic (cratonic) landscape undergoing extremely low rates of incision (> 5 m/Ma). River incision processes are examined as a function of substrate lithology and the magnitude and frequency of formative flows along Sandy Creek gorge, a mixed bedrock-alluvial stream in arid SE-central Australia. Incision is focused along a bedrock channel with a partial alluvial cover arranged into riffle-pool macrobedforms that reflect interactions between rock structure and large-flood hydraulics. Variations in channel width and gradient determine longitudinal trends in mean shear stress (τb) and therefore also patterns of sediment transport and deposition. A steep and narrow, non-propagating knickzone (with 5% alluvial cover) coincides with a resistant quartzite unit that subdivides the gorge into three reaches according to different rock erodibility and channel morphology. The three reaches also separate distinct erosional styles: bedrock plucking (i.e. detachment-limited erosion) prevails along the knickzone, whereas along the upper and lower gorge rock incision is dependent upon large formative floods exceeding critical erosion thresholds (τc) for coarse boulder deposits that line 70% of the channel thalweg (i.e. transport-limited erosion).
The mobility of coarse bed materials (up to 2 m diameter) during late Holocene palaeofloods of known magnitude and age is evaluated using step-backwater flow modelling in conjunction with two selective entrainment equations. A new approach for quantifying the formative flood magnitude in mixed bedrock-alluvial rivers is described here based on the mobility of a key coarse fraction of the bed materials; in this case the d84 size fraction. A 350 m3/s formative flood fully mobilises the coarse alluvial cover with τb200-300 N/m2 across the upper and lower gorge riffles, peaking over 500 N/m2 in the knickzone. Such floods have an annual exceedance probability much less than 10- 2 and possibly as low as 10- 3. The role of coarse alluvial cover in the gorge is discussed at two scales: (1) modulation of bedrock exposure at the reach-scale, coupled with adjustment to channel width and gradient, accommodates uniform incision across rocks of different erodibility in steady-state fashion; and (2) at the sub-reach scale where coarse boulder deposits (corresponding to <i>τ</i><sub>b</sub> minima) cap topographic convexities in the rock floor, thereby restricting bedrock incision to rare large floods.
While recent studies postulate that decreasing uplift rates during post-orogenic topographic decay might drive a shift to transport-limited conditions in river networks, observations here and elsewhere in post-orogenic settings suggest, to the contrary, that extremely low erosion rates are maintained with substantial bedrock channel exposure. Although bed material mobility is known to be rate-limiting for bedrock river incision under low sediment flux conditions, exactly how a partial alluvial cover might be spatially distributed to either optimise or impede the rate of bedrock incision is open to speculation. Observations here suggest that the small volume of very stable bed materials lining Sandy Creek gorge is distributed so as to minimise the rate of bedrock fluvial incision over time
Recommended from our members
The changing sensitivity of power systems to meteorological drivers: a case study of Great Britain
The increasing use of intermittent renewable generation (such as wind) is increasing the exposure of national power systems to meteorological variability. This study identifies how the integration of wind power in one particular country (Great Britain, GB) is affecting the overall sensitivity of the power system to weather using three key metrics: total annual energy requirement and peak residual load (from sources other than wind) and wind power curtailment.
The present-day level of wind power capacity (approximately 15GW) is shown to have already changed the power system's overall sensitivity to weather in terms of the total annual energy requirement, from a temperature- to a wind-dominated regime (which occurred with 6GW of installed wind power capacity). Peak residual load from sources other than wind also shows a similar shift. The associated changes in the synoptic- and large-scale meteorological drivers associated with each metric are identified and discussed. In a period where power systems are changing rapidly, it is therefore argued that past experience of the weather impacts on the GB power system may not be a good guide for the impact on the present or near-future power system
Recommended from our members
Exploring the meteorological potential for planning a high performance European Electricity Super-grid: optimal power capacity distribution among countries
The concept of a European Super-grid for electricity presents clear advantages for a reliable and affordable renewable power production (photovoltaics and wind). Based on the mean-variance portfolio optimization analysis, we explore optimal scenarios for the allocation of new renewable capacity at national level in order to provide to energy decision-makers guidance about which regions should be mostly targeted to either maximize total production or reduce its day-to-day variability.
The results show that the existing distribution of renewable generation capacity across Europe is far from optimal: i.e., a 'better' spatial distribution of resources could have been achieved with either a ~31% increase in mean power supply (for the same level of day-to-day variability) or a ~37.5% reduction in day-to-day variability (for the same level of mean productivity). Careful planning of additional increments in renewable capacity at the European level could, however, act to significantly ameliorate this deficiency. The choice of where to deploy resources depends, however, on the objective being pursued – on the one hand, if the goal is to maximize average output, then new capacity is best allocated in the countries with highest resources, whereas investment in additional capacity in a north/south dipole pattern across Europe would act to most reduce daily variations and thus decrease the day-to-day volatility of renewable power supply
- …
