489 research outputs found
Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls
Using Gibbs ensemble Monte Carlo simulations and density functional theory we
investigate the fluid-fluid demixing transition in inhomogeneous
colloid-polymer mixtures confined between two parallel plates with separation
distances between one and ten colloid diameters covering the complete range
from quasi two-dimensional to bulk-like behavior. We use the
Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer
interactions are hard-sphere like, whilst the pair potential between polymers
vanishes. Two different types of confinement induced by a pair of parallel
walls are considered, namely either through two hard walls or through two
semi-permeable walls that repel colloids but allow polymers to freely
penetrate. For hard (semi-permeable) walls we find that the capillary binodal
is shifted towards higher (lower) polymer fugacities and lower (higher) colloid
fugacities as compared to the bulk binodal; this implies capillary condensation
(evaporation) of the colloidal liquid phase in the slit. A macroscopic
treatment is provided by a novel symmetric Kelvin equation for general binary
mixtures, based on the proximity in chemical potentials of statepoints at
capillary coexistence and the reference bulk coexistence. Results for capillary
binodals compare well with those obtained from the classic version of the
Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86,
7138 (1987)], and are quantitatively accurate away from the fluid-fluid
critical point, even at small wall separations. For hard walls the density
profiles of polymers and colloids inside the slit display oscillations due to
packing effects for all statepoints. For semi-permeable walls either similar
structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure
Dense colloidal suspensions under time-dependent shear
We consider the nonlinear rheology of dense colloidal suspensions under a
time-dependent simple shear flow. Starting from the Smoluchowski equation for
interacting Brownian particles advected by shearing (ignoring fluctuations in
fluid velocity) we develop a formalism which enables the calculation of
time-dependent, far-from-equilibrium averages. Taking shear-stress as an
example we derive exactly a generalized Green-Kubo relation, and an equation of
motion for the transient density correlator, involving a three-time memory
function. Mode coupling approximations give a closed constitutive equation
yielding the time-dependent stress for arbitrary shear rate history. We solve
this equation numerically for the special case of a hard sphere glass subject
to step-strain.Comment: 4 page
Flow curves of colloidal dispersions close to the glass transition: Asymptotic scaling laws in a schematic model of mode coupling theory
The flow curves, viz. the curves of stationary stress under steady shearing,
are obtained close to the glass transition in dense colloidal dispersions using
asymptotic expansions in a schematic model of mode coupling theory. The shear
thinning of the viscosity in fluid states and the yielding of glassy states is
discussed. At the transition between fluid and shear-molten glass, simple and
generalized Herschel-Bulkley laws are derived with power law exponents that can
be computed for different particle interactions from the equilibrium structure
factor.Comment: 14 pages, 14 figures, 4 tables, Eur. Phys. J. E (submitted
Green-Kubo approach to the average swim speed in active Brownian systems
We develop an exact Green-Kubo formula relating nonequilibrium averages in
systems of interacting active Brownian particles to equilibrium
time-correlation functions. The method is applied to calculate the
density-dependent average swim speed, which is a key quantity entering coarse
grained theories of active matter. The average swim speed is determined by
integrating the equilibrium autocorrelation function of the interaction force
acting on a tagged particle. Analytical results are validated using Brownian
dynamics simulations
Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility and coexistence diameter
The critical behavior of a model colloid-polymer mixture, the so-called AO
model, is studied using computer simulations and finite size scaling
techniques. Investigated are the interfacial tension, the order parameter, the
susceptibility and the coexistence diameter. Our results clearly show that the
interfacial tension vanishes at the critical point with exponent 2\nu ~ 1.26.
This is in good agreement with the 3D Ising exponent. Also calculated are
critical amplitude ratios, which are shown to be compatible with the
corresponding 3D Ising values. We additionally identify a number of subtleties
that are encountered when finite size scaling is applied to the AO model. In
particular, we find that the finite size extrapolation of the interfacial
tension is most consistent when logarithmic size dependences are ignored. This
finding is in agreement with the work of Berg et al.[Phys. Rev. B, V47 P497
(1993)]Comment: 13 pages, 16 figure
Critical behavior in colloid-polymer mixtures: theory and simulation
We extensively investigated the critical behavior of mixtures of colloids and
polymers via the two-component Asakura-Oosawa model and its reduction to a
one-component colloidal fluid using accurate theoretical and simulation
techniques. In particular the theoretical approach, hierarchical reference
theory [Adv. Phys. 44, 211 (1995)], incorporates realistically the effects of
long-range fluctuations on phase separation giving exponents which differ
strongly from their mean-field values, and are in good agreement with those of
the three-dimensional Ising model. Computer simulations combined with
finite-size scaling analysis confirm the Ising universality and the accuracy of
the theory, although some discrepancy in the location of the critical point
between one-component and full-mixture description remains. To assess the limit
of the pair-interaction description, we compare one-component and two-component
results.Comment: 15 pages, 10 figures. Submitted to Phys. Rev.
Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments.
Starting from the Kramers equation for the phase-space dynamics of the N-body probability distribution, we derive a dynamical density functional theory (DDFT) for colloidal fluids including the effects of inertia and hydrodynamic interactions (HI). We compare the resulting theory to extensive Langevin dynamics simulations for both hard rod systems and three-dimensional hard sphere systems with radially symmetric external potentials. As well as demonstrating the accuracy of the new DDFT, by comparing with previous DDFTs which neglect inertia, HI, or both, we also scrutinize the significance of including these effects. Close to local equilibrium we derive a continuum equation from the microscopic dynamics which is a generalized Navier–Stokes-like equation with additional non-local terms governing the effects of HI. For the overdamped limit we recover analogues of existing configuration-space DDFTs but with a novel diffusion tensor
Interfacial tension and nucleation in mixtures of colloids and long ideal polymer coils
Mixtures of ideal polymers with hard spheres whose diameters are smaller than
the radius of gyration of the polymer, exhibit extensive immiscibility. The
interfacial tension between demixed phases of these mixtures is estimated, as
is the barrier to nucleation. The barrier is found to scale linearly with the
radius of the polymer, causing it to become large for large polymers. Thus for
large polymers nucleation is suppressed and phase separation proceeds via
spinodal decomposition, as it does in polymer blends.Comment: 4 pages (v2 includes discussion of the scaling of the interfacial
tension along the coexistence curve and its relation to the Ginzburg
criterion
Three-dimensional jamming and flows of soft glassy materials
Various disordered dense systems such as foams, gels, emulsions and colloidal
suspensions, exhibit a jamming transition from a liquid state (they flow) to a
solid state below a yield stress. Their structure, thoroughly studied with
powerful means of 3D characterization, exhibits some analogy with that of
glasses which led to call them soft glassy materials. However, despite its
importance for geophysical and industrial applications, their rheological
behavior, and its microscopic origin, is still poorly known, in particular
because of its nonlinear nature. Here we show from two original experiments
that a simple 3D continuum description of the behaviour of soft glassy
materials can be built. We first show that when a flow is imposed in some
direction there is no yield resistance to a secondary flow: these systems are
always unjammed simultaneously in all directions of space. The 3D jamming
criterion appears to be the plasticity criterion encountered in most solids. We
also find that they behave as simple liquids in the direction orthogonal to
that of the main flow; their viscosity is inversely proportional to the main
flow shear rate, as a signature of shear-induced structural relaxation, in
close similarity with the structural relaxations driven by temperature and
density in other glassy systems.Comment: http://www.nature.com/nmat/journal/v9/n2/abs/nmat2615.htm
Nonlinear rheology of colloidal dispersions
Colloidal dispersions are commonly encountered in everyday life and represent
an important class of complex fluid. Of particular significance for many
commercial products and industrial processes is the ability to control and
manipulate the macroscopic flow response of a dispersion by tuning the
microscopic interactions between the constituents. An important step towards
attaining this goal is the development of robust theoretical methods for
predicting from first-principles the rheology and nonequilibrium microstructure
of well defined model systems subject to external flow. In this review we give
an overview of some promising theoretical approaches and the phenomena they
seek to describe, focusing, for simplicity, on systems for which the colloidal
particles interact via strongly repulsive, spherically symmetric interactions.
In presenting the various theories, we will consider first low volume fraction
systems, for which a number of exact results may be derived, before moving on
to consider the intermediate and high volume fraction states which present both
the most interesting physics and the most demanding technical challenges. In
the high volume fraction regime particular emphasis will be given to the
rheology of dynamically arrested states.Comment: Review articl
- …
