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A fundamental assumption of the dynamical density functional theory (DDFT) of colloidal systems is that a
grand-canonical free-energy functional may be employed to generate the thermodynamic driving forces. Using
one-dimensional hard rods as a model system, we analyze the validity of this key assumption and show that
unphysical self-interactions of the tagged particle density fields, arising from coupling to a particle reservoir,
are responsible for the excessively fast relaxation predicted by the theory. Moreover, our findings suggest that
even employing a canonical functional would not lead to an improvement for many-particle systems, if only
the total density is considered. We present several possible schemes to suppress these effects by incorporating
tagged densities. When applied to confined systems, we demonstrate, using a simple example, that DDFT
necessarily leads to delocalized tagged particle density distributions, which do not respect the fundamental
geometrical constraints apparent in Brownian dynamics simulation data. The implication of these results for
possible applications of DDFT to treat the glass transition are discussed.

I. INTRODUCTION

During the past decade of liquid-state research, the classical
dynamical density functional theory (DDFT) has proven to be
a versatile and reliable tool for describing the dynamics of
interacting colloidal particles in a wide variety of situations.
Building upon the success of equilibrium DFT [1,2], the
dynamical theory enables first-principles calculation of the
inhomogeneous density ρ(r,t) generated in response to a
time-dependent external potential field Vext(r,t) [3]. Within
the DDFT framework, a nonvanishing particle flux arises
solely from gradients in a local chemical potential μ(r,t),
derived from an equilibrium free-energy functional. The theory
has been successfully applied to many problems, including
relaxation to equilibrium from a given nonequilibrium initial
state [3], the early and intermediate stages of spinodal de-
composition [4], and systems for which the time-dependence
of Vext(r,t) drives the system into nonequilibrium steady or
stationary states [5–9]. In recent years, the original formulation
of DDFT has been extended to treat both systems and
situations of ever increasing complexity. These more recent
developments have lead to a better understanding of the
influence of both nonpotential fields (e.g., mechanical [10–13],
thermal [7,14]) and particle geometry (see, e.g., Ref. [15]) on
diffusive colloidal dynamics.

Despite the undeniable success of the DDFT in robustly
capturing the qualitative features of ρ(r,t) for many problems
of interest, the theory rests upon two fundamental assumptions,
both of which remain to be either systematically evaluated or
improved upon. The first of these is the so-called adiabatic
approximation, namely the assumption that the two-body cor-
relations may be calculated from the instantaneous one-body
density using equilibrium statistical mechanical relations. The
second major assumption is that the nonequilibrium chemical
potential μ(r,t) generating the particle dynamics can be
identified with the functional derivative of a grand-canonical
free energy. Combining these two approximations yields a
closed equation for the one-body density, which does not
require explicit knowledge of the higher-order correlations.

In the present work we investigate the validity of employing
a grand-canonical density functional to treat many-body
effects in DDFT. Problems can be anticipated in confined
systems with small particle number, for which the choice of
ensemble strongly influences the equilibrium density profiles.
More generally, use of the grand-canonical ensemble becomes
questionable for situations where the density field is strongly
localized in space and contains only few particles. This can
occur either as a direct consequence of minima in Vext(r,t)
or as a transient, which may occur along the natural diffusive
trajectory of ρ(r,t) through the space of density functions.
Transient localization occurs quite naturally when considering
the time-evolution of the density from sharply defined initial
conditions, for which the positions of all N particles, or a
subset thereof, are known precisely. The individual density
peaks of particles sharply located at t = 0 remain well
separated for short times and are normalized to unity (each
peak contains a single particle).

The above considerations become even more pertinent
when considering potential applications of grand-canonical
DDFT to describe dynamic arrest and glass formation. By
tagging the density field of a single particle in a dense
hard-sphere liquid, it has recently been shown [16] that the
tagged density (the self part of the van Hove function) can
exhibit a two-step relaxation within DDFT, leading to dynamic
arrest at sufficiently high-volume fractions. Similar behavior
was also found for particles interacting via a Gaussian pair
potential [17]. However, due to the use of an approximate free-
energy functional, it remains unclear whether the observed
slow dynamics arise purely from the presence of (possibly
spurious) metastable minima in the free energy, or whether it
is a genuine physical prediction of the DDFT which would
persist even when using an exact equilibrium functional. The
work of Hopkins et al. [16,17] raises a fundamental question:
Can a theory that involves only the one-body density field
capture, even in principle, the transition to a nonergodic state?

A major difficulty in answering the above question for
realistic glass forming systems in two or three dimensions
is the absence of an exact equilibrium free-energy functional.
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It thus becomes difficult to disentangle errors in the dynamical
theory from those induced by an approximate free energy. For
this reason we focus on the simplest nontrivial model for which
the grand-canonical free-energy functional is known exactly,
namely a system of hard rods in one dimension [18,19].
Despite its simplicity, the hard-rod model has one feature in
common with glassy states occuring in higher dimensional
systems: both exhibit a partitioned phase space in which
physically meaningful averages must be taken over a subset
of phase space that is dynamically accessible. In glasses, this
partitioning occurs spontaneously as a thermodynamic control
parameter crosses some critical value, whereas for hard rods
the reduced phase space is always present, simply as a result of
ordering the particles on a line. The confinement of a given rod
by its neighbors to the left and right presents the prototypical
glassy “cage” and serves as a useful reality check for theories
aiming to describe dynamical arrest in higher dimensions.

The paper will be structured as follows: In Sec. II we first
will outline the microscopic dynamics under consideration,
review the standard formulation of DDFT, and define the
functional to be employed. In Sec. III we consider the diffusion
of a single rod and various methods by which grand-canonical
contributions can be eliminated. In Sec. IV we identify the
importance of tagging the individual density profiles. In
Sec. V we present numerical results for various test cases
involving several interacting rods. Finally, in Sec. VI we
provide a discussion of our results and and identify some future
challenges.

II. FUNDAMENTALS

A. Microscopic dynamics

We consider a system of N colloidal particles in a
time-dependent external potential Vext(r,t) interacting via the
spherically symmetric pair potential φ(r). The total potential
energy is given by

UN ({r i},t) =
∑

i

Vext(r i ,t) +
∑
i<j

φ(|r i − rj |). (1)

As the individual colloidal trajectories are stochastic, it is
appropriate to adopt a probabilistic description of the particle
motion. The probability distribution of particle positions is
described by the Smoluchowski equation [20]:

∂P (t)

∂t
+

∑
i

∇i · ji = 0, (2)

where P (t) ≡ P ({r i},t). The fact that Eq. (2) takes the
form of a continuity equation expresses the conservation of
particle number. Neglecting the influence of solvent-induced
hydrodynamic interactions (see Ref. [21] for a discussion of
the implications of this approximation) the probability flux of
particle i is given by

ji = −D0(∇i − β Fi)P (t), (3)

with β = 1/kBT . The force Fi on particle i is generated from
the total potential energy [Eq. (1)] according to Fi = −∇iUN .

B. Dynamic density functional theory

Integration of Eq. (2) over all but one of the particle
coordinates leads to an exact coarse-grained expression for
the one-body density profile

∂ρ(r1,t)

∂t
= −∇1 · j(r1,t), (4)

where the particle flux involves an integral over the nonequi-
librium two-body density

j(r1,t) = �kBT ∇1ρ(r1,t) + �ρ(r1,t) ∇1Vext(r1,t)

+�

∫
dr2∇1φ(r12) ρ(2)(r1,r2,t), (5)

with mobility � = D0/kBT . Equation (4) is the first in a
hierarchy of equations for the n-body density. In equilibrium,
the flux is identically zero and Eq. (4) reduces to the first
member of the Yvon-Born-Green hierarchy [22].

The integral term in Eq. (5) may be approximated as an
explicit functional of the one-body density using the methods
of equilibrium DFT. The Helmholtz free energy is split into
three contributions,

F = Fid + Fex +
∫

d r1 Vext(r1) ρ(r1), (6)

where � is the thermal de Broglie wavelength and the ideal
gas free energy is known exactly:

Fid[ ρ(r1)] =
∫

dr1 ρ(r1)[ ln(�3ρ(r1)) − 1 ]. (7)

The excess free-energy functionalFex[ ρ(r)] contains all infor-
mation regarding the interparticle interactions and is connected
to the average interaction force via the grand-canonical sum
rule [1],∫

d r2 ∇1φ(r12)ρ(r2|r1) = ∇1
δFex[ρ(r1)]

δρ(r1)
, (8)

where we have introduced the conditional distribution
ρ(r2|r1) ≡ ρ(2)(r1,r2)/ρ(r1); i.e., the average number density
at r2 given a particle is fixed at r1.

The assumption that Eq. (8) remains valid in nonequilib-
rium is the so-called adiabatic approximation. It is equiva-
lent to assuming that the pair density ρ(2)(r1,r2,t) relaxes
instantaneously to the equilibrium pair-density corresponding
to the current one-body density ρ(r1,t). The total particle flux
[Eq. (5)] may thus be written in the form

j(r1,t) = −�ρ(r1,t)∇1μ(r1,t), (9)

where the nonequilibrium chemical potential is given by

μ(r1,t) = δF [ ρ(r1,t)]

δρ(r1,t)
. (10)

Combining Eqs. (4), (9), and (10) yields the familiar form of
the DDFT equation of motion:

∂ρ(r1,t)

∂t
= ∇1 ·

{
�ρ(r1,t)∇1

δF [ρ(r1,t)]

δρ(r1,t)

}
. (11)

In standard applications of DDFT the free-energy F entering
Eq. (11) is a grand-canonical quantity. Equation (11) thus
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describes the evolution of the density between two grand-
canonical states, subject to the constraint that the average
particle number is conserved.

For the present work, the DDFT equation is solved numer-
ically using finite difference techniques. The time integration
is performed using the Euler method and the spatial dervatives
with central differences. The integrations required for the
convolutions are evaluated using the trapezoidal rule, which
in one dimension can be calculated very efficiently due to the
finite range of the weight functions.

C. The Percus hard-rod functional

For our numerical investigations we will employ the exact
excess Helmholtz free-energy functional of hard rods in one
dimension [18,19]. For an m component mixture of rods the
functional is given by

Fex[ ρ(x)] =
∫ ∞

−∞
dx 	({nα}), (12)

where the free-energy density, 	 = −n0(x) ln[1 − n1(x)], is a
function of a set of weighted densities,

nα(x) =
m∑

i=1

∫ ∞

−∞
dx ′ ρi(x

′) ω
(α)
i (x − x ′), (13)

where ρi(x) is the density profile of species i. The weight func-
tions are characteristic of the particle geometry, with ω

(1)
i (x) =

�(| x| − di/2) and ω
(0)
i (x) = δ(| x| − di/2)/2, where di is the

length of rod species i.

III. SINGLE-PARTICLE DIFFUSION

We begin by considering a single rod, whose diffusion is
governed by the diffusion equation, resulting in a Gaussian
density distribution. The diffusion equation can be recovered
from the DDFT equation of motion [Eq. (11)] in the case of
vanishing interactions; i.e., Fex = 0. In Fig. 1 we compare the
results of DDFT Eq. (11) using the Percus functional with
the exact Gaussian result for the relaxation of the density
profile from the sharp initial condition ρ(x) = δ(x). The inset
to Fig. 1 shows the corresponding mean-squared displacement
(MSD) as a function of time. The DDFT reproduces neither
the expected Gaussian form of the density profile nor the linear
increase of the MSD as a function of time. Only at long times
does the slope of the MSD approach unity as the local density
becomes very small for all x and the ideal gas term starts
to dominate the free energy [Eq. (6)]. The deficiency of the
theory lies in the nonvanishing contribution from the excess
free energy, which leads to an effective self interaction of
the density field and consequent enhanced relaxation rate. As
originally pointed out by Marconi and Tarazona [3], employing
a grand canonical functional effectively puts the system
into contact with an unphysical particle reservoir, such that
even for 〈N〉 = 1 the density distribution contains additional
contributions from states with N = 0,2,3, . . .. The interaction
term thus does not vanish, as it should for a single particle,
because states with N > 1 naturally incorporate interparticle
interactions. The first step toward an improved theory is thus
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FIG. 1. (Color online) The time evolution of density of a single
particle for times t = 0.5,1.0,5.0,10.0 (in units of d2/D0). The
length scale is set by the rod length d. We compare the exact
result (gray dotted) with standard DDFT using the exact Percus
functional (blue solid) and both first-order (green short dashed)
and second-order (red long dashed) canonical corrections. The inset
shows the corresponding mean-squared displacement.

to eliminate, or at least reduce, the interaction between the
physical particle and the reservoir.

A. Canonical correction

In Refs. [23] and [24], González et al. proposed a scheme by
which canonical equilibrium density profiles can be expanded
in terms of grand-canonical averages. The method can be
interpreted as a formal expansion of the canonical density
profile in inverse powers of 〈N〉. Using this expansion, it was
found possible to systematically correct the grand-canonical
density profiles predicted by equilibrium DFT to achieve an
improved description of a hard-sphere fluid confined in a
small spherical cavity. Generalizing the arguments presented
in Refs. [23,24], the canonical average of an arbitrary function
of the particle positions A({r i}) may be expressed in terms of
grand-canonical averages. To second order the expansion is
given by

〈A〉c = 〈A〉 + f1(A) + f2(A) + · · · , (14)

where 〈·〉 is a grand-canonical average and 〈·〉c is a canonical
average. The correction terms are given by

f1(A) = −1

2
〈(N − 〈N〉)2〉 ∂2〈A〉

∂〈N〉2

f2(A) = −1

6
〈(N − 〈N〉)3〉 ∂3〈A〉

∂〈N〉3

− 1

2
〈(N − 〈N〉)2〉 ∂2f1

∂〈N〉2 .

Due to the scaling of the partial derivatives in Eq. (14) the terms
f1 and f2 are of order 〈N〉−1 and 〈N〉−2, respectively. The
utility of the expansion Eq. (14) lies in its rapid convergence,
even for very small values of 〈N〉 [23,24].
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Returning to the diffusion of a single particle, we now
seek to use Eq. (14) to suppress unwanted grand-canonical
contributions to the dynamics of ρ(r,t). At any given time we
can use the instantaneous density profile ρ(r,t) to construct an
effective external potential,

Veff(r,t) = −β−1 ln[ρ(r,t)] − c(1)[ρ(r,t)] + ln(z), (15)

where the fugacity term ln(z) is a physically irrelevant
constant. The one-body direct correlation function,

c(1)(r1) = −δβFex[ρ ]

δρ(r1)
, (16)

is evaluated using the instantaneous density. When employed
in an equilibrium calculation, the potential Veff(r,t) will,
by construction, yield the equilibrium results for ρ(r,t)
and all other quantities accessible to DFT. The adiabatic
approximation is equivalent to assuming that the higher-order
nonequilibrium correlations are equal to the higher-order
equilibrium correlations calculated in the presence of Veff(r,t).

We now define I (r1,t) as the average interaction force in
the grand-canonical ensemble

I (r1,t) ≡
∫

d r2 ∇1φ(r12)ρ(2)
gc (r1,r2), (17)

where the subscript (gc) makes explicit the fact that the pair-
density inside the integral is a grand-canonical average. Using
Eq. (8) yields

I (r1,t) = −kBTρ(r1,t)∇1c
(1)(r1,t). (18)

Expressed in this way, it is rather natural to employ the
expansion Eq. (14) to approximate the required integral in
terms of known grand-canonical quantities:∫

d r2 ∇1φ(r12)ρ(2)(r1,r2)

= I (r1,t) + f1[I (r1,t)] + f2[I (r1,t)] + · · · (19)

When calculated to all orders, the corrected interaction force
should be zero for a single particle. We now proceed to
explicitly calculate the first two correction terms in Eq. (19).
The practical implementation of our scheme is as follows: at
each time step in the numerical integration of Eq. (2), the
effective potential [Eq. (15)] is constructed from the instan-
taneous density. The partial derivatives required to evaluate
the functions fn appearing in Eq. (19) are then calculated
numerically by performing equilibrium DFT calculations in
the presence of a fixed Veff(r1,t). The series Eq. (19) is
then evaluated to the desired order and used to generate the
density distribution at the next time step. Grand-canonical
contributions to the time evolution of the density ρ(r,t) can
thus be suppressed on the fly in order to provide a more
realistic description of the trajectory through the space of
density functions.

In Fig. 1 we show the time evolution of the density of
a single particle corrected using Eq. (19) to both first and
second order. The series converges very rapidly and the
second-order results are virtually indistinguishable from the
exact Gaussian function, despite the fact that 〈N〉 = 1. Similar
rapid convergence has been observed in the static case [24].

IV. MULTIPLE-PARTICLE DIFFUSION

We have now established that a systematic suppression
of the grand-canonical contributions to the dynamics indeed
leads to improved results, at least for the trivial case of a
single particle. However, application of the same procedure to
systems with N > 1 reveals an additional complication.

Consider first the equilibrium average for a single infinite
potential well in the canonical ensemble with N = 1 and in
the grand-canonical ensemble with 〈N〉 = 1 [see Figs. 2(a)
and 2(b)]. The average value of a quantity is the average over
the value of this quantity for all microstates appropriate to the
given ensemble. As a result, the average density profile for
canonical and grand-canonical cases are different because of
the additional microstates arising from coupling to an external
particle reservoir.

The situation is similar to DDFT applied to transiently
localized particles that have not had enough time to diffuse
far away from their starting position. The average interaction
force is a grand canonical average, and the potential wells
discussed above are manifest in the effective external potential
[Eq. (15)]. In the grand-canonical case the microstates with
more than one particle in the well give rise to a nonvanishing
interaction, which leads to the erroneous MSD. The canonical
corrections suppress these unwanted microstates, and the
resulting treatment is closer to the canonical case.

Next, consider two infinite potential wells. The canonical
correction series can again suppress the microstates with more
than two particles in total. But the canonical ensemble still
includes microstates with two particles in the same well. In the
context of DDFT for two localized particles, these microstates
again lead to an unphysical interaction force, which does not
vanish even if the two density peaks are far away from each
other. The interaction force on a particle resulting from number

(a) (b)

(c) (d)

FIG. 2. (Color online) Schematic illustration of the microstates
that contribute to canonical and grand-canonical averages for particles
in one and two infinite potential wells. (a) Canonical average
N = 1; (b) grand-canonical average 〈N〉 = 1; (c) canonical average
N = 2; (d) grand-canonical average 〈N〉 = 2. The second and third
microstate in (c) are unphysical in the context of DDFT for localized
particles and lead to a overestimation of the interactions.
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fluctuations in the Veff(r,t) well generated by the particle can
therefore be interpreted as a self interaction.

For larger numbers of particles and wells, each well is
coupled to a reservoir formed by the other wells. As N

increases, the canonical and grand-canonical average become
increasingly similar and the canonical correction decreases in
magnitude, rendering it useless for the suppression of the self
interaction.

What is required is a method to prevent the averaging
procedure from including microstates states with more than
one particle per localized density peak.

A. Tagged particle approach

An improved description can be achieved by viewing the
N -particle system as an N -component mixture, in which each
component corresponds to a single particle. This allows us
to precisely locate particles, even after their densities started
overlapping.

The DDFT for an arbitrary m-component mixture is a set
of m-coupled equations,

∂ρi(r1,t)

∂t
= ∇1 ·

[
�ρi(r1,t)∇1

δF [{ρi}]
δρi(r1,t)

]
, (20)

where i labels the species. By tagging each individual particle,
Eq. (20) constitutes a set of m partial differential equations
in D + 1 dimensions (D space dimensions and time) for
the time-dependent one-body density fields. On the other
hand, the Smoluchowski equation [Eq. (2)] for such a system
is a partial differential equation in Dm + 1 dimensions for
the probability distribution. A numerical solution of the
Smoluchowski equation is therefore very demanding and only
possible for very few particles.

Second, in real applications, one is not forced to tag each
particle individually, and Eq. (20) offers complete flexibility
as to which subsets of particles are associated with distinct
species. For example, in the dynamic test particle calculations
of Ref. [16], only a single particle was tagged and the rest of
the system was treated as a second component.

The application of the full correction series with an infinite
number of terms to such a tagged system corresponds to a
physically sensible average, which suffers from neither particle
fluctuations nor from the combinatorial effects discussed
above. However, for large numbers of species and higher orders
the canonical correction series becomes rather unwieldy, but
progress can be made by only keeping some of the terms.
This can be demonstrated by considering a pair of interacting
particles, each carrying a distinct species label.

To first order, the canonical correction for such a binary
mixture is given by

〈A〉c = 〈A〉gc + f 11
1 (A) + f 00

1 (A) + f 01
1 (A), (21)

where the correction terms are given by

f 11
1 (A) = −1

2

∂〈N1〉
∂βμ1

∂2〈A〉
∂〈N1〉2 , f 00

1 (A) = −1

2

∂〈N0〉
∂βμ0

∂2〈A〉
∂〈N0〉2 ,

f 01
1 (A) = −∂〈N0〉

∂βμ1

∂2〈A〉
∂〈N0〉∂〈N1〉 .
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FIG. 3. (Color online) (a) Test case of two overlapping Gaus-
sian density peaks. (b) The grand-canonical average force I1 =
−kBTρ1(r1)∇1c1(r1) (green solid line) acting on the density field
ρ1(r1) (right peak). Negative values indicate a force pointing to
the left. Also shown are the full first-order canonical correction to
the average force (long dashed line) and the same quantity without
the cross correction f 01

1 (short dashed line). (c) The three terms
contributing to the first-order canonical correction. The length scale
is given by the rod length.

Higher-order terms are of similar form, but involve higher
derivatives.

In analogy with the single particle calculation presented
in Sec. III, the first-order correction [Eq. (21)] could be
used to determine the time evolution of two tagged density
peaks. However, as argued in Sec. III A, the correction of
the interaction at each time is equivalent to an equilibrium
situation. So, we can assess the relative magnitudes of the three
terms in Eq. (21) by considering a static situation for which
the two tagged profiles are fixed to be overlapping Gaussians
[see Fig. 3(a)], although the detailed functional form chosen
is not important.

Choosing A = I1(r,t) from Eq. (18) as target quantity in
Eq. (21), where particle 1 is defined to be on the right, we
numerically evaluate each of the three terms in the canonical
correction series for a given separation between the Gaussian
peaks [see Fig. 3(c)]. The three terms can be interpreted as
the corrections to the force acting on particle one. f 11

1 corrects
for grand-canonical fluctuations in ρ1, f 00

1 for the increased
interaction of ρ0 with ρ1 due to fluctuations in ρ0, and f 10

1 for
the interaction between fluctuations in ρ0 and ρ1. If interactions
are short range, it is clear that the term f 11

1 makes the dominant
contribution to the first-order correction and that the small term
f 01

1 may be neglected to a good level of approximation.
Just keeping the terms f 00

1 and f 11
1 corresponds to a

first-order canonical correction for each component separately.
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As we have shown in Sec. III, this corresponds to a first-
order suppression of the unphysical self-interaction, as each
component consists of only one particle. Neglecting the mixed
terms of the full canonical correction series leads to a system
where each component does not interact with itself but only
with the other components.

The conclusion which we draw from this simple test is
that a suppression of the self-interaction in a system of
N -tagged density peaks, in which each peak represents a
separate species and starts from sharp initial conditions,
results in a reasonable approximation to the true Brownian
dynamics at short and intermediate times. However, the
prohibitive numerical demands of performing the canonical
transformation for more than a few particles (especially if
higher orders of correction are required) make desirable an
alternative scheme for eliminating the self-interaction.

B. Eliminating the self-interaction

1. Widom-Rowlinson model

A well-established model for which particles of the
same species do not interact is the Widom-Rowlinson (WR)
model [25,26]. An approximate density functional for the m-
component WR model has been derived [27], which provides
a reasonable description of both the bulk phase behavior and
structural correlations. We propose to identify each species
of an N -component WR model with an individual particle.
Employing the Widom-Rowlinson functional in this fashion
guarantees the absence of self-interactions but treats the
interactions in an approximate fashion as the functional is
not exact. In equilibrium with finite particle number (e.g., in
confined geometries) the Percus and tagged WR functionals
will yield different results. Due to the absence of unphysical
self interactions, the equilibrium density profiles of the tagged
WR model should lie closer to the results of Brownian
dynamics simulation than those obtained from the Percus
functional.

In one dimension, the approximate excess free energy of
the WR model is given by Ref. [27],

Fwr
ex ({ρi}) =

∫
dx	(x) 	 =

m∑
i=0

ni
0φi, (22)

with weighted densities n0 and n3 for each component of the
mixture. φi are the first derivatives of the 0D excess free energy
with regard to ni

3 and given by

φi = ln

(
1 − m +

m∑
j=1

exp(zj )

)
− zi . (23)

The fugacities zi can be calculated from the implicit equation

zi exp(zi) =
[

1 − m +
m∑

j=1

exp(zi)

]
ni

3. (24)

The one-particle direct correlation function required to cal-
culate the average interaction force [Eq. (18)] is obtained by
functional differentiation of the excess free energy.

2. Subtraction of the self-energy

A simpler, albeit ad hoc method of suppressing the self-
interaction is to first calculate the excess free energy of the full
N component mixture using the Percus functional [Eq. (12)]
and then subtract the individual excess free energy of each
density peak. The remainder thus provides an approximation to
the desired excess free energy arising from interaction between
different species. This prescription amounts to employing the
“subtraction” functional

F sub
ex ({ρi}) = Fex({ρi}) −

∑
i

Fex(ρi) (25)

in the DDFT Eq. (20). While the ansatz Eq. (25) is not justified
from fundamental principles, it nevertheless has a certain
physical appeal. In particular F sub

ex vanishes for the case of
a single particle and becomes exact for many particles in the
low density limit. A similar approach was taken in Ref. [16],
in which an explicit self-interaction term of a tagged particle
was omitted from the Ramakrishnan-Yussouff functional [28]
in order to recover the exact single-particle diffusion.

V. NUMERICAL RESULTS FOR SEVERAL RODS

A. Free expansion

In order to compare the dynamics generated by the WR
functional [Eq. (22)] with those generated by the subtraction
functional [Eq. (25)], we consider the free diffusion of five
rods from sharp initial conditions. The initial delta function
distributions are each separated by 2.5 particle diameters
(corresponding to a volume fraction of around 0.4). This
choice ensures that the density fields have not entered the
low-density regime for the intermediate times at which overlap
between neighboring density peaks becomes significant. The
present test, which is similar to that considered in Ref. [3],
thus constitutes a genuine test of the functional Eqs. (22) and
(25) beyond the second virial level. In Fig. 4 we show the time
evolution of the total density,

ρ(x,t) =
m∑

i=1

ρi(x,t), (26)

with m = 5, for three different times generated using the
Percus Eq. (12), WR Eq. (22), and subtraction Eq. (25)
functionals in the multicomponent DDFT Eq. (20).

As was the case for an isolated particle (see Fig. 1),
the short-time relaxation of the density peaks generated by
the Percus functional is too fast when compared with the
Brownian dynamics simulation data. In contrast, the relaxation
of the total density predicted by both the WR and subtraction
functionals is in almost perfect agreement with the simulation
results. This good level of agreement supports our argument
that the self-interaction is the primary source of error induced
by a grand-canonical generating functional, at least for short
and intermediate times. Close inspection of the data reveals
that the subtraction functional describes the simulation data
slightly better than the WR functional, but the difference is
marginal. However, if the initial packing of the rods is denser,
so that larger local densities occur, the WR functional becomes
less reliable and predicts an unphysically fast relaxation, while
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FIG. 4. (Color online) Free expansion of five hard rods from a
dense state at times t = 0.1,0.3,1.0. For clarity, curves for t = 0.1
and 0.3 have been shifted upward by 1 and 0.5, respectively, and
we show only positive x values. The rods are initially located at
x = 0,±2.5,±5, corresponding to a volume fraction around 0.4.
Numerical results obtained from the Percus (12), Widom-Rowlinson
(22), and subtraction (25) functionals are compared with the results
of Brownian dynamics simulation. The simulation errorbars in this
and all subsequent figures are smaller than the symbols themselves.
The unit length is set by the rod length d , the times are in units of
d2/D0.

the subtraction functional still gives a good description of the
simulation data.

B. Relaxation through a highly correlated state

We now consider a further test case for which rods with a
length of 1.6 relax from sharp initial conditions in a periodic
external potential βVext(x) = −2 sin(2πx). The initial posi-
tions are chosen such that a particle is located at every second
potential minimum. This situation was originally suggested
in Ref. [3] as a toy model for the study of slow dynamics.
The external potential and rod length are constructed in such
a way that two rods cannot be simultaneously at the bottom of
neighboring potential minima. Transport of particles between
neighboring minima thus requires a correlated motion of all
N rods and it is the rarity of such events which leads to a
long relaxation time. For long times, an equilibrium solution
is reached in which each potential well is equally populated.

In Fig. 5 we compare the time evolution of the total
density from standard DDFT employing the Percus functional
[Eq. (12)] and from a tagged particle calculation employing
the subtraction functional [Eq. (25)] with Brownian dynamics
data.

For short times, the relaxation generated by the Percus
functional is faster than that of the subtraction functional,
in keeping with the intuition obtained from the case of
a single free particle (see Sec. III). Surprisingly, for later
times the relaxation of the subtraction functional profile
overtakes that of the Percus profile, arriving more quickly
at the equilibrium distribution in which, on average, half a
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FIG. 5. (Color online) Evolution of the total density for the
relaxation of four rods of length d = 1.6 in a periodic potential
with minima at integer values and periodic boundary conditions.
The length scale is given by the period h of the external potential,
the timescale by h2/D0. Shown are the results from simulations and
DDFT calculations using the Percus functional [Eq. (12)] and the
subtraction functional [Eq. (25)] for times t = 1.0,5.0,25.0,100.0.
The corresponding evolution of a tagged density field is shown in
Fig. 6.

rod is located in each well. Use of the Percus functional
thus yields better agreement with the simulation data than the
supposedly superior subtraction functional. However, the good
performance of the standard theory arises from a fortuitous
cancellation of errors, which can be appreciated by looking at
the time evolution of a single tagged density peak.

In Fig. 6 we show the time evolution of the tagged density
corresponding to the third rod (labeling from left to right in
Fig. 5). The other tagged densities evolve identically with
time. Inspection of the profiles for t = 5 reveals the strange
behavior of the tagged density from the Percus functional.
Physically, it is reasonable to expect that the density peak will
first diffuse into the neighboring wells before spreading further
to the next-nearest-neighbors, and so on. However, the Percus
DDFT predicts that the density in the next-nearest-neighbor
well grows more rapidly than that in the neighboring well.
For intermediate times, the unphysically large density that has
built up in the two next-nearest-neighbor wells then pushes
back on the central peak and slows its decay (i.e., generates
a component of the self interaction that tends to confine the
remaining density in the central peak).

In contrast to the Percus functional, the subtraction func-
tional has a strongly reduced self interaction and does not suffer
from an unphysical decay of the tagged density. Unfortunately,
the improved description provided by use of the subtraction
functional destroys the error cancellation presented by the
Percus functional profile and thus relaxes much faster than
the simulation data. The relative relaxation rate of the two
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FIG. 6. (Color online) A tagged density for same system de-
scribed in the legend of Fig. 5 at t = 1.0,5.0,25.0,100.0. The
Percus functional generates an unphysical growth of density peaks in
next-nearest-neighbor minima, which is suppressed when employing
the subtraction functional. The inset shows the difference in the total
density between neighboring potential minima. Units as described in
the legend of Fig. 5.

approaches can be appreciated from the inset to Fig. 6, which
shows the difference in total density between neighboring
potential minima.

The important message that emerges from this test case
is that a qualitatively good description of the total density
relaxation is not sufficient to conclude that the DDFT is really
capturing correctly the underlying dynamics of the tagged
density profiles.

C. Cage dynamics

In two recent papers, Hopkins et al. [16,17] have shown
that standard grand-canonical DDFT (in three-dimensions) can
reproduce the two-step relaxation of the self part of the van
Hove function [22] characteristic of glass-forming systems. At
sufficiently high volume fractions, a divergent relaxation time
was identified. In these studies, the one-component Gaussian-
core [17] and hard-sphere [16] models were formally viewed
as a two-component mixture consisting of N − 1 particles
of species d and a single particle of species s, thus tagging
an arbitrary particle. A sharp initial condition was taken for
particle s and the corresponding equilibrium distribution for
the density field of the d-component

ρs(r,0) = δ(r), (27)

ρd (r,0) = ρbg(r), (28)

where ρb is the bulk density.
Interpretation of the results of Refs. [16,17] was com-

plicated by the fact that an approximate quadratic density
functional was employed in the DDFT equation. It remains
an open question whether the observed slow dynamics, which
arise from a minimum in the equilibrium free energy, are
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FIG. 7. (Color online) Equilibrium total density profiles of two
hard rods confined to a slit with soft walls (Yukawa potential with
screening length 0.2) located at positions x = ±5. The results are
obtained from DFT calculations with the Percus functional, the
subtraction functional, and the two component Widom-Rowlinson
functional. The unit length is set by the rod length.

genuinely associated with the glass transition, or rather an
indication of freezing within the theory. We think that some
light can be shed on this issue by considering the very
simple case of two rods confined between impenetrable walls.
The unique ordering of the rods on the line restricts the
kinetically accessible phase space. As this is a characteristic
feature of arrested states in general, we believe that a robust
account of the equilibrium tagged density distributions of two
rods confined to a slit is a necessary prerequisite for any
DDFT claiming a realistic description of dynamic arrest in
higher-dimensional systems.

In Fig. 7 we compare the equilibrium total density from
DDFT with simulation data for two rods confined by the
potential

βVext(x) = e
x−4.5

l

x − 4.5
+ e

4.5−x
l

4.5 − x
, (29)

with decay length l = 0.2. This gives a volume fraction around
0.2. For this situation it can easily be shown that the canonical
equilibrium density of the left particle is given by

ρ1(x) = e−βVext(x)
∫ ∞

x+d

dx ′e−βVext(x ′). (30)

The primary observation to be made from Fig. 7 is that
the Percus functional generates a packing structure at the wall
with a well developed peak and a dip. The dip is absent in
the exact profile and the peak is less pronounced. It should be
recalled that the Percus functional profiles represent the exact
grand-canonical result for a slit with 〈N〉 = 2. The peak is
slightly underestimated by the WR functional [Eq. (22)] and
entirely absent from the subtraction functional profile. Overall
the WR functional shows the best level of agreement with the
simulation data for the total density ρ(x).

On the basis of the total density profiles shown in Fig. 7,
it is tempting to conclude that the WR functional provides an
acceptable description of the equilibrium density distribution.
Indeed, this is true if one is interested only in the total density
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FIG. 8. (Color online) The tagged particle density for the situation
described in the legend of Fig. 7. The exact density profile clearly
shows how the particles are constrained to one side of the slit, as the
particles cannot move through each other. At the wall, the exclusion
zone for the left particle is clearly visible. The DFT profiles cannot
capture this feature and the tagged particle densities of both particles
are identical and delocalized over the whole slit. Units as described
in the legend of Fig. 7.

ρ(x). A completely different picture emerges, however, when
considering the two tagged density profiles. In Fig. 8 we
show the tagged densities corresponding to the same situation
as shown in Fig. 7. The difference between the theoretical
predictions and the simulation data is dramatic. All of the
DFT approaches yield identical equilibrium tagged profiles
ρ1(x) = ρ2(x) = ρ(x)/2, clearly demonstrating that the DDFT
time evolution does not respect the fact that hard-core particles
cannot pass through each other. At some point during the time
evolution, the density fields always tunnel through each other
to arrive at unphysical regions of phase space. Given that none
of the functionals considered in the present work are capable
of capturing this most elementary “caging” dynamic, we find it
unlikely that the DDFT employed in Refs. [16,17] is capable of
capturing a true nonergodic transition. The constrained order
of the rods is encoded in the hierarchy of correlation functions
(see Sec. II B) in a complicated way, so one cannot expect that
truncating this hierarchy preserves this property.

VI. DISCUSSION

We have analyzed the shortcomings of DDFT for the
description of localized density distributions using a simple
one-dimensional model of hard rods. This model has the ad-
vantage that the exact grand-canonical equilibrium functional
is known, thus removing the possibility of dynamical artifacts
arising from use of an approximate functional. It is well known
among DDFT practitioners that the standard theory predicts
a relaxational dynamic that is systematically too fast when
benchmarked against the Brownian dynamics simulation. By
employing a formal expansion of the canonical average,
we conclude that this deficiency is due to the unphysical
self-interaction arising from grand-canonical coupling to a
reservoir.

In situations where few particles are strongly confined,
the presence of a self-interaction leads to equilibrium density
profiles that differ from those obtained in Brownian dyanmics
simulation. We anticipate that the self-interaction will become
relevant for large systems in cases for which large unbalanced
forces are present, e.g., during the relaxation of large-density
gradients in a nonequilibrium profile. The corrections in the
force resulting from removal of the self-interaction will modify
the relaxation timescale and slow the relaxation relative to
standard grand-canonical DDFT.

The only method by which the self-interaction can be
removed is to individually tag the density field of each
particle and then employ either the canonical expansion series,
a Widom-Rowlinson-type model, or ad hoc subtraction of
undesirable contributions to the excess free-energy functional.
Of these three possibilities, the latter proved to be both the
most reliable and simplest to implement.

Once the self-interaction has been dealt with appropriately,
we find that the free expansion of any number of interacting
rods can be well described using DDFT. However, the
considered test case that focused on the collective motion of
rods (see Sec. V B) demonstrated that the previously reported
good agreement between DDFT and simulation [3] is due to
cancellation of errors. Removal of the self-interaction corrects
the unphysical aspects of the tagged density relaxation, with
the consequence that the results for the relaxation of the total
density become worse (even faster than standard DDFT).
The fact that DDFT clearly has difficulty in describing the
relaxation through highly correlated states raises suspicions
about its ability to capture the slow dynamics of dense systems.

Although our one-dimensional model provides only a crude
description of a real fluid, it nevertheless enables some of
the subtleties associated with a partitioned phase space to
be investigated within a simple setting. Motivated by the
recent work of Hopkins et al. [16,17], we presented the case
of two confined rods as a toy model for the cage effect,
whereby particles in a glass are localized by the geometrical
constraints of their neighbors. Given that the very simple
geometrical constraints on the tagged particle densities are
not respected (see Fig. 8), it would be remarkable if the same
theory turned out to be capable of describing the spontaneous
localization associated with the glass transition in two-
and three-dimensions. One possibility is that the particular
functional employed in Refs. [16,17], namely the quadratic
Ramakrishnan-Yussouff functional [28], is somehow able to
compensate for the errors arising from a grand-canonical
treatment of the density. However, such a scenario would seem
to require a highly nontrivial cancellation of errors.

By considering test cases in which finite numbers of rods
are confined to a slit, we now strongly suspect that any
theoretical approach that is closed on the level of the one-body
density, such as DDFT, will be unable to describe localization
of the tagged density fields (at least when employing the
exact equilibrium functional). When working solely with the
one-body density, effective interactions between the average
quantities ρi(r) are implemented, whereas Brownian dynamics
considers interactions between the density operators ρ̂i(r) =∑

i δ(r − ri) before taking the average. This mean-field treat-
ment of the interaction between tagged density fields appears
to make the tunneling of tagged density into geometrically
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forbidden regions unavoidable. We note that these limitations
do not necessarily pose a problem for the established density
functional theory of freezing [29]. In such calculations, the
crystal is identified as a periodic variation of the total density
field and no claim is made to identify any specific particle: the
tagged densities are fully delocalized throughout the sample.

To arrive at a theory that respects the geometrical constraints
on the tagged density fields, it is necessary to go beyond a
density-based description and consider explicitly the dynamics
of the higher-order density correlators, i.e., going beyond the
simplest adiabatic approximation. Indeed, the importance of
improving upon the standard adiabatic approach was recently
identified by Haataja et al. [30] as one of the most important
open problems in DFT. A fundamental question is whether a
finite-order truncation of the dynamical hierarchy [of which
Eqs. (4) and (5) constitute the first member] can capture tagged
density localization.

Integration of the Smoluchowski equation over all but two
of the particle coordinates leads to an equation of motion for
the pair density involving a weighted integral over the three
particle correlations. Specifically, one is required to evaluate
integrals of the form∫

d r3

[
ρ(3)(r1,r2,r3)

ρ(2)(r1,r2)

]
[−∇1φ(r13)]. (31)

The first factor in square brackets can be identified as the
conditional probability to find a particle at r3, given that
there are particles at positions r1 and r2. The integral thus
represents the average force acting on a particle at r1 due
to interactions mediated by the other particles (an analogous
integral provides the indirect force on a particle at r2). Making
an adiabatic approximation, the integral Eq. (31) may be
replaced by ∇1c

(1)
r2 (r1), where c

(1)
r2 (r1) is the one-body direct

correlation function at r1 calculated in the presence of both
the physical external field and a test particle fixed at r2 (hence
the parametric dependence upon r2). This leads to

∂ρ(2)(r1,r2)

�∂t
= ∇1 ·

[
ρ(2)(r1,r2)∇1

(
δF

δρ(r1)

)
2

]

+∇2 ·
[

ρ(2)(r1,r2)∇2

(
δF

δρ(r2)

)
1

]
. (32)

Combining Eqs. (4), (5), and (32) leads to a closed theory
for the dynamics of the one- and two-body density in the
form of a pair of coupled first-order (in time) differential
equations. A similar equation was employed in Ref. [31] [see
their Eq. (9)] in which the three-body density was treated
using a superposition approximation. Crucially, in Eq. (32)
the free-energy functional to be differentiated contains an
external field consisting of the physical external potential
of interest, Vext(r), plus a “test” particle held fixed at either
position r1 or r2, as indicated by the subscript on the functional
derivative. Equation (32) is still “adiabatic,” in the sense

that three- and higher-body correlations are determined from
the nonequilibrium ρ(r,t) and ρ(2)(r1,r2,t) using equilibrium
statistical mechanical relations. Nevertheless, this extended
theory goes beyond Eq. (11), as the pair density is no longer
tied to the instantaneous value of the density and relaxes
instead on a finite timescale. Note that the formal elimination of
ρ(2)(r1,r2) from the coupled equations generates, in principle,
an equation for ρ(r1) alone, which includes memory effects
[32]. In practice, however, the nonlinearity of the equations
does not allow an explicit form for the memory kernel to be
obtained and memory effects remain implicit to the coupled
system of equations.

In equilibrium, Eq. (32) predicts that the pair corre-
lations are those obtained from a test-particle calculation
using the chosen free-energy functional. The exact single-
particle dynamics are recovered using the initial condition
ρ(2)(r1,r2,0) = 0. More generally, the correct normalization of
the initial pair density,

∫
d r1

∫
d r2 ρ(2)(r1,r2,0) = N (N − 1),

is preserved throughout the time evolution, which is not the
case when applying the standard adiabatic approximation, i.e.,
calculating equilibrium pair correlations in the presence of
the effective potential [Eq. (15)]. Although we defer a more
detailed investigation of Eq. (32) to future work, preliminary
calculations indicate the results for the nonequilibrium one-
and two-body density of hard rods are considerably improved,
relative to standard DDFT. Of particular interest will be the
predictions of Eq. (32) for the density profile of confined
systems in the limit of long times.

Apart from our preliminary investigations of Eq. (32), the
only explicit test of the adiabatic approximation of which we
are aware was performed using continuous-time Monte-Carlo
simulations of the Potts model subject to Glauber dynamics
[33]. In this study, initial simulation configurations were
prepared that reproduced the equilibrium one-body occupation
number profile but with nonequilibrium correlations between
the occupation numbers. During the simulated time-evolution
the relaxation of higher-order correlation functions caused
the the one-body profile to drift first out of equilibrium,
passing through a sequence of transient intermediate states,
before returning back to equilibrium at long times. These
findings clearly cannot be reproduced by theories based
on ρ(r1,t) alone, as no distinction can be made between
states with the same one-body profile but different higher-
body correlations. This issue may prove to be important
when considering systems with slow dynamics for which the
one-body density remains constant during gradual structural
relaxation processes.
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[12] J. Brader and M. Krüger, Mol. Phys. 109, 1029 (2011).
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