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ABSTRACT
Superadiabatic dynamical density functional theory (superadiabatic-DDFT), a first-principles approach based on inhomogeneous two-body
correlation functions, is employed to investigate the response of interacting Brownian particles to time-dependent external driving. Predic-
tions for the superadiabatic dynamics of the one-body density are made directly from the underlying interparticle interactions without the
need for either adjustable fit parameters or simulation input. The external potentials we investigate have been chosen to probe distinct aspects
of structural relaxation in dense, strongly interacting liquid states. Nonequilibrium density profiles predicted by the superadiabatic theory
are compared with those obtained from both adiabatic DDFT and event-driven Brownian dynamics simulation. Our findings show that
superadiabatic-DDFT accurately predicts the time-evolution of the one-body density.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0155856

I. INTRODUCTION

Classical Density Functional Theory (DFT) is an exact
framework for determining the equilibrium microstructure and
thermodynamics of classical many-particle systems in external
fields.1,2 The standard method to obtain the one-body density
within DFT is to minimize the grand potential functional and solve
the resulting Euler–Lagrange (EL) equation for a specified external
potential at the temperature and chemical potential of interest.
When the grand potential functional is not exactly known, as is
usually the case, the EL equation yields density profiles consistent
with the compressibility route to thermodynamics.2,3 An alternative
approach is provided by force-DFT, in which the same grand
potential functional is used to obtain density profiles consistent
with the virial route.3 The key feature of force-DFT is that it
explicitly uses the inhomogeneous two-body density and exploits
the fact that this quantity is a functional of the one-body density.
Substitution of the two-body density functional into the well-known
Yvon–Born–Green (YBG) equation4,5 then yields a self-consistent

scheme for determining the equilibrium one-body density.
Inconsistency between the compressibility and virial routes is
familiar from integral equation theories of bulk fluids.6 Standard
DFT and force-DFT present an analogous situation on the level of
the inhomogeneous one-body density profile, as discussed in detail
in Ref. 3.

The simplest generalization of DFT to treat nonequilibrium
Brownian systems is known as dynamical density functional theory
(DDFT). In analogy with equilibrium DFT, there are two opera-
tionally distinct but formally equivalent variations of DDFT. While
both of these are based on the assumption that the nonequilibrium
two-body density can be represented by the equilibrium two-body
density corresponding to the instantaneous nonequilibrium one-
body density, they differ in how this “adiabatic approximation” is
implemented.

Within standard DDFT, the dynamics of the one-body den-
sity are driven by the gradient of the one-body direct correlation
function,1,7,8 whereas force-DDFT involves explicit integration of
the adiabatic two-body density to obtain the average interaction
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force at each time-step.3 Although these approaches often yield
qualitatively reasonable results, they are not quantitatively reliable
and can break down completely in situations for which the time-
evolution of the microstructure involves strongly correlated particle
motion.7,9

Very recently, a first-principles superadiabatic-DDFT has been
developed and implemented.10 This new approach yields the lead-
ing order correction to the adiabatic approximation by explicitly
addressing the nonequilibrium dynamics of the inhomogeneous
two-body density. The improved resolution provided by the two-
body correlations allows for a more realistic description of structural
relaxation in strongly interacting systems. Superadiabatic-DDFT
does not involve an explicit memory kernel but rather encodes
the history of the system into the current values of the one-
and two-body densities. The time-evolution of these quantities is
determined by the simultaneous solution of a pair of coupled,
time-local differential equations. By identifying the one- and two-
body density as relevant variables, the superadiabatic-DDFT enables
a self-contained, autonomous description of many-body Brown-
ian dynamics, which captures the dominant physical processes in
the system. Explicit treatment of the inhomogeneous two-body
density provides detailed information about the internal structure
of the fluid, from which integrated quantities such as the stress
tensor11,12 or one-body current can be calculated at any point in
the time-evolution.

In Ref. 10, the superadiabatic-DDFT was derived by a sys-
tematic coarse-graining of the many-body Smoluchowski equation.
As a first application, this approach was used to predict the time-
evolution of the one-body density profile of hard-spheres following
an instantaneous change in the external potential. The agreement
between the theoretical density profiles and the Brownian dynamics
simulation data was very promising. In this paper, we continue our
investigation of the superadiabatic-DDFT by considering systems
driven out-of-equilibrium by the application of a periodically vary-
ing time-dependent external potential. The two situations consid-
ered have been carefully selected to probe distinct aspects of struc-
tural rearrangement in dense fluids. Particular attention will be paid
to the transient dynamics of the one-body density going from equi-
librium to the steady-state. The results from superadiabatic-DDFT
will be compared with those from force-DDFT, which provides
the appropriate reference theory for assessing superadiabatic effects,
and event-driven Brownian dynamics (BD) simulation, where the
simulations were performed following the algorithm proposed
in Ref. 13.

II. THEORY
A. Microscopic dynamics

For a system of N interacting Brownian particles, the time-
evolution of the configurational probability density, P(rN , t), where
rN represents the set of all coordinates, is given by the Smoluchowski
equation14

1
D0

∂P(rN , t)
∂t

=

N

∑

i=1
∇ri ⋅ (P(r

N , t)(∇ri ln(P(rN , t))

+∇ri βU(rN , t))), (1)

where β = (kBT)−1 and D0 is the bare diffusion coefficient. For sys-
tems with pairwise interactions, the total potential energy is given
by

U(rN , t) =
N

∑

i< j
ϕ(rij) +

N

∑

i=1
Vext(ri, t), (2)

where ϕ is the pair potential, rij = ∣ri − rj∣, and Vext is a time-
dependent external potential.

B. Superadiabatic-DDFT
The superadiabatic-DDFT, presented in Ref. 10, consists of a

pair of differential equations for the coupled time-evolution of the
one- and two-body densities. The first equation is obtained by inte-
grating the Smoluchowski Eq. (1) over N − 1 particle coordinates.
This yields

1
D0

∂ρ(r1, t)
∂t

= ∇r1 ⋅ (∇r1 ρ(r1, t) + ρ(r1, t)∇r1 βVext(r1, t)

+ ∫ dr2ρ(2)(r1, r2, t)∇r1 βϕ(r12)), (3)

which is an exact equation of motion for the one-body density, ρ,
requiring as input the nonequilibrium two-body density, ρ(2).

Integrating the Smoluchowski Eq. (1) over N − 2 particle coor-
dinates yields a formally exact equation of motion for the two-body
density. This includes an integral term involving the nonequilib-
rium three-body density, which is an unknown quantity. However,
by invoking an adiabatic closure, the full integral term can be
approximated using the two-body density.10 The resulting approx-
imate equation of motion, which constitutes the second equation of
superadiabatic-DDFT, is given by

1
D0

∂ρ(2)(r1, r2, t)
∂t

= ∑

i=1,2
∇ri ⋅ (∇ri ρ

(2)
sup(r1, r2, t) + ρ(2)sup(r1, r2, t)

×∇ri βϕ(r12) + ρ(2)(r1, r2, t)∇ri βVext(ri)

− ρ(2)ad (r1, r2, t)∇ri βVad(ri, t)), (4)

where the superadiabatic part of the two-body density is defined
according to

ρ(2)sup(r1, r2, t) ≡ ρ(2)(r1, r2, t) − ρ(2)ad (r1, r2, t), (5)

and where the adiabatic two-body density, ρ(2)ad , is found by evaluat-
ing the equilibrium two-body density at the instantaneous one-body
density,

ρ(2)ad (r1, r2, t) ≡ ρ(2)eq (r1, r2; [ρ(r, t)]). (6)

Equation (6) expresses a concept essential for understanding the
coupled superadiabatic-DDFT Eqs. (3) and (4), namely that the
equilibrium two-body density is a functional of the one-body
density.3,10,15 The adiabatic two-body density is obtained by evalu-
ating the equilibrium two-body density functional using the instan-
taneous nonequilibrium one-body density. The adiabatic potential,
Vad, appearing in (4) generates the fictitious external force field
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required to stabilize the adiabatic system. This is given by the YBG
relation of equilibrium statistical mechanics,4,5

−∇r1 Vad(r1, t) ≡ kBT∇r1 ln ρ(r1, t)

+ ∫ dr2
ρ(2)ad (r1, r2, t)

ρ(r1, t)
∇r1 ϕ(r12), (7)

but here applied to the nonequilibrium system.
For given interaction potential and external field, the

superadiabatic-DDFT predicts the coupled time-evolution of the
one- and two-body density, starting from their initial values ρ(r1, t
= 0) and ρ(2)

(r1, r2, t = 0). The theory has no adjustable fit para-
meter and is not dependent on any input from stochastic sim-
ulations (the BD simulation data shown later in this work are
purely for comparison). Although the superadiabatic theory is not
restricted to any particular choice of external field, we will focus
in this paper on external potentials exhibiting planar geometry, for
which the one-body density varies only as a function of a single
cartesian coordinate. In this case, the equations of superadiabatic-
DDFT can be simplified, as discussed in detail in Sec. III A
of Ref. 10.

C. Equilibrium limit
In equilibrium, the term in parentheses on the right-hand side

of Eq. (3) vanishes, and we obtain the first-order YBG equation

∇r1 ρeq(r1) + ρeq(r1)∇r1 βVext(r1)

+ ∫ dr2ρ(2)eq (r1, r2; [ρeq])∇r1 βϕ(r12) = 0. (8)

The zero-sum of these three terms expresses the equilibrium bal-
ance between Brownian, external, and internal forces.4 The notation
employed again highlights that the equilibrium two-body density
is a unique functional of the one-body density. Of the various
methods available to obtain this two-body density functional, the
most accurate are those based on solution of the inhomogeneous
Ornstein–Zernike (OZ) equation

heq(r1, r2; [ρeq]) = c(2)eq (r1, r2; [ρeq]) + ∫ dr3heq(r1, r3; [ρeq])

× ρeq(r3)c(2)eq (r3, r2; [ρeq]), (9)

where heq is the total correlation function and c(2)eq is the two-body
direct correlation function. In this work, we choose to follow the
approach employed in Ref. 10 and calculate c(2)eq by taking the sec-
ond functional derivative of the excess (over ideal) Helmholtz free
energy functional, Fexc, with respect to the density,

c(2)eq (r1, r2; [ρeq]) = −
δ2βFexc

[ρ]
δρ(r1)δρ(r2)

∣

ρeq

. (10)

As there exist reliable approximations to Fexc for many model sys-
tems, we can regard c(2)eq as a known quantity, such that heq can be
determined by the solution of Eq. (A6). This can then be related to
the two-body density according to

heq(r1, r2; [ρeq]) =
ρ(2)eq (r1, r2; [ρeq])

ρeq(r1)ρeq(r2)
− 1. (11)

The closed set of Eqs. (8), (10), (A6), and (A7) constitutes the force-
DFT,3 which is the equilibrium limit of superadiabatic-DDFT.

III. RESULTS FOR THREE-DIMENSIONAL
HARD-SPHERES IN PLANAR GEOMETRY

The hard-sphere model captures the packing constraints that
dominate structural relaxation in dense liquids and thus presents an
appropriate choice for the present study. In the following, we show
numerical results for a three-dimensional system of hard-spheres of
diameter d = 1, subject to a time-dependent external potential. The
units of energy and time are fixed by kBT = 1 and d2

/D0 = 1, respec-
tively. The external potential considered is a function of a single
cartesian coordinate, taken here as the z-direction, which imposes a
planar symmetry. The potential consists of a harmonic trap with an
additional (time-dependent) Gaussian peak and takes the following
form:

Vext(z, t) = A(z − zA
0 )

2
+ B(t)e−α(z−zB

0 (t))
2

, (12)

where the harmonic trap amplitude is set equal to A = 1.5 with its
minimum located at zA

0 = 5. The Gaussian decay parameter is set to
a constant value of α = 5, while its amplitude and peak position are
given by the time-dependent functions B(t) and zB

0 (t), respectively.
In the following, we explore two specific realizations of this general
external potential to probe strongly correlated cooperative motion
and structural relaxation. The resulting one-body density profiles
from superadiabatic-DDFT are then benchmarked against BD sim-
ulation data and compared with the predictions of force-DDFT. We
calculate the adiabatic two-body density by using Eqs. (10), (A6),
and (A7) together with the well-known Rosenfeld approximation
to the excess Helmholtz free energy16 (see the Appendix for further
details).

As already mentioned in the introduction, the force-DDFT
is a purely adiabatic approach that assumes instantaneous equili-
bration of the two-body density. Superadiabatic- and force-DDFT
have the same equilibrium limit, namely, force-DFT, and this
convenient feature enables a comparison focused solely on adia-
batic/superadiabatic differences without any residual equilibrium
bias. A full account of the force-DDFT method can be found in Ref.
3. Implementation details for both superadiabatic- and force-DDFT
in planar geometry can be found in Secs. III A and III B of Ref. 10
and in Secs. III G and IV A of Ref. 3, respectively.

A. Periodic compression
For our first test-case, we set the external potential (12) such

that the location of the Gaussian peak is held constant in the cen-
ter of the harmonic trap, zB

0 (t) = zA
0 = 5, with a time-dependent

amplitude given by

B(t) =
Bmax

2
(1 − cos (ωt)), (13)

for t > 0 and zero for earlier times. We choose a maximal ampli-
tude Bmax = 5 and a frequency ω = 2π/0.02. The time-dependent
variation of the external potential is illustrated in panel (a) of
Fig. 1.
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FIG. 1. Time-dependent external potentials for the two special cases considered in this work. The general form of the potential is given in Eq. (12). In panel (a), we show a
potential consisting of a confining harmonic trap and a centered Gaussian peak with a time-dependent amplitude [see Eq. (13)]. In panel (b), we show a potential consisting
of the same harmonic trap but now with a Gaussian peak that moves (with fixed amplitude) back-and-forth about the trap minimum [see Eq. (14)]. The first case is designed
to “periodically compress” the particles away from the center and toward the outer regions of the trap. The second case induces more flow in the system as the Gaussian
peak constantly disrupts the particle microstructure.

The system is initially prepared in an equilibrium state with
an average of 2.5 particles per unit area in the xy-plane, i.e., ⟨N⟩
= ∫ dzρeq(z) = 2.5, before being driven out-of-equilibrium by the
oscillatory Gaussian peak (13) for times t > 0. Panels (b)–(e) of
Fig. 2 show theoretical density profiles at different times, calculated
using both superadiabatic-DDFT [red-framed panels (c) and (e)]
and force-DDFT [green-framed panels (b) and (d)]. The data shown
in panel (a) tracks the value of the one-body density at the center
of the harmonic trap, ρ(z = 5, t), as a function of time. This shows
clearly the transient relaxation of the one-body density from equi-
librium to a periodic nonequilibrium steady-state. The filled circles
indicate times at which we show the full density profile in panels
(b)–(e), and the stars are the results of the BD simulation, shown at
regular time intervals.

We first discuss the data shown in panel (a) of Fig. 2. At time
t = 0, the system is in equilibrium, and both superadiabatic- and
force-DDFT predict identical density profiles, namely those of force-
DFT. The equilibrium density profile is not in perfect agreement
with that of simulation (calculated using the Monte-Carlo method)
due to the approximate free energy used to calculate the equilib-
rium two-body density, in analogy with the situation considered
in Ref. 10. From t = 0 until around t = 0.2, we observe a transient
relaxation during which ρ(z = 5, t) decreases after each oscillation
period. This decrease reflects the changes in the microstructure
caused by periodically compressing the particles away from the cen-
ter and toward the outer regions of the harmonic trap. During
the transient regime, interparticle collisions cause the particles to
adjust their positions in such a way that they can move as freely
as possible back-and-forth in response to the externally applied
forces. The time-dependent Gaussian respects the symmetry of the
trap (mirror symmetric about z = 5) and does not induce a large
amount of flow but rather leads to more subtle configurational
changes as each particle modifies its local environment through
repeated interaction with its neighbors. The absence of strong flow

in the system suggests that superadiabatic effects can be expected
to be modest. The superadiabatic- and force-DDFT predictions for
ρ(z = 5, t) are given by the red and green curves, respectively. The
prediction of superadiabatic-DDFT is in excellent quantitative
agreement with the BD data and captures almost perfectly the
transient behavior, whereas force-DDFT decays too rapidly. The
superadiabatic-DDFT correctly implements the zero flux condition
on the two-body density at all times and thus provides a much more
realistic account of the microstructural rearrangements induced by
external forces.

In panels (b) and (c), we show the full one-body density pro-
files from force- and superadiabatic-DDFT, respectively, at selected
times during the transient relaxation. These times [indicated by
filled circles in panel (a)] have been selected such that force- and
superadiabatic-DDFT profiles can be compared at equivalent points
in the oscillation cycle rather than at strictly equal times. As the
repulsive Gaussian peak grows in magnitude (see Fig. 1), parti-
cles are forced away from the center of the harmonic trap, and a
first packing peak develops on either side of the trap minimum.
Although qualitatively similar, this process occurs more slowly in
superadiabatic-DDFT than in force-DDFT, which we attribute to
the improved treatment of structural relaxation in the superadiabatic
theory, as discussed earlier. As the system approaches a steady-
state, the density profile develops a second packing peak on either
side of the trap minimum. Here we again observe that the build-up
of packing structure takes longer in superadiabatic-DDFT than in
force-DDFT.

Returning to panel (a), the value of the one-body density at the
trap minimum, ρ(z = 5, t), indicates the onset of a steady-state for
times t > 0.2. In panel (e), we show full density profiles calculated
in this steady-state using superadiabatic-DDFT at times separated
by one oscillation period. The purple colored profiles were calcu-
lated at the minima of the curve shown in panel (a), whereas the
blue profiles were calculated at the maxima. The fact that curves of
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FIG. 2. Periodic compression. Starting from the equilibrium density profile in a harmonic trap, we track the time-evolution of the one-body density following the switch-on
(at t = 0) of an additional repulsive Gaussian potential with a time-dependent amplitude [see Eqs. (12) and (13)]. Panel (a) shows the density at the trap center (z = 5) as
a function of time obtained from superadiabatic-DDFT (red line) and force-DDFT (green line). The stars are data points from simulation, and the filled circles indicate the
times at which we show full density profiles in panels (b)–(e) (note the corresponding color scheme). Following a period of transient relaxation, the system enters a periodic
stationary state for times greater than t ∼ 0.2.

the same color cannot be distinguished from each other confirms
that we have indeed entered a steady-state for the full density pro-
file and not only for its value at z = 5. The same conclusion can
be drawn from the profiles calculated using force-DDFT shown in
panel (d). The strong similarity between the steady-state profiles cal-
culated using both force- and superadiabatic-DDFT [compare, for
example, the light and dark purple curves in panels (d) and (e),
respectively] is a consequence of a nonequilibrium microstructure,
which allows each particle to oscillate locally back-and-forth with-
out very frequent interaction with its neighbors. In such a state,
one can expect that superadiabatic effects, which arise from inter-
particle interactions, will remain small. It is thus not surprising that
the steady-state density profiles of force- and superadiabatic-DDFT
are in close agreement. This does not apply to the transient regime,
during which frequent interparticle interactions serve to break-up
and rearrange the initial equilibrium microstructure. We note that
superadiabatic effects will have an increased influence on the steady-
state density profiles in more densely packed systems with a larger

value of ⟨N⟩, but we choose to focus here on fluid states at more
moderate packing.

In Fig. 3, we compare the predictions of force- and
superadiabatic-DDFT with simulation data at four different
times during the transient regime of the time evolution. The
superadiabatic-DDFT is globally more accurate than the force-
DDFT at all times. However, agreement with the simulation data
is still not perfect. We attribute much of the error exhibited by
superadiabatic-DDFT to the underlying equilibrium free energy
functional used to generate the adiabatic two-body density [see
Eq. (10)]. The deviation of the equilibrium force-DFT curve at t = 0
from the Monte-Carlo data persists in the nonequilibrium den-
sity profiles from superadiabatic-DDFT, which is consistent with
the findings of Ref. 10. We are confident that employing a more
accurate equilibrium approximation to generate the adiabatic two-
body density would enable the superadiabatic-DDFT to give an even
more satisfactory account of the simulation data. In any case, this
residual equilibrium error becomes less significant when the system
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FIG. 3. Periodic compression. Comparing the predictions of force- and superadiabatic-DDFT (green dashed lines and red solid lines, respectively) with BD simulation
data (gray dashed lines) at four different times during the transient time-evolution of the system. The external potential is given by (12) and (13) and generates a
periodic compression of the particles toward the sides of the harmonic trap. The equilibrium density curves, at t = 0, obtained by force-DFT (black solid lines) and
Monte-Carlo simulation (silver dotted lines) are included as a reference. In all cases, the superadiabatic-DDFT agrees considerably better with the simulation data than
the force-DDFT.

FIG. 4. Flow induced mixing. Starting at t = 0, with the equilibrium density profile in a harmonic trap with a fixed Gaussian peak at zB
0 = zA

0 = 5, we show, for t ≥ 0, the
time-evolution of the one-body density as the Gaussian peak sweeps from side-to-side following Eqs. (12) and (14). Panel (a) shows values of the density at the trap center
(z = 5) as a function of time obtained from superadiabatic-DDFT (red line) and force-DDFT (green line). The stars are data points from simulation, and the filled circles
indicate the times at which we show full density profiles within the transient regime in panels (b) (force-DDFT) and (c) (superadiabatic-DDFT)—note the corresponding color
scheme.
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FIG. 5. Flow induced mixing. Panels (a)–(f) compare theoretical predictions with BD simulation data at different times during the transient regime. In each panel, we give
equilibrium profiles from force-DFT (black solid lines) and Monte-Carlo simulation (silver dotted lines) to serve as a reference. Force-DDFT profiles are given by green dashed
lines, superadiabatic-DDFT profiles by red solid lines, and BD simulation data by dashed gray lines.

undergoes stronger flow and superadiabatic effects become more
prominent, as demonstrated below.

B. Flow induced mixing
We next set the external potential (12) such that the Gaussian

has a constant amplitude, B(t) = Bmax = 5, but a time-dependent
position, given by

zB
0 (t) =

⎧
⎪⎪
⎨
⎪⎪
⎩

zA
0 , if t < 0,

zA
0 + Δz sin (ωt), if t ≥ 0,

(14)

where Δz = 1 is the maximal displacement of the Gaussian peak
away from the harmonic potential minimum, located at zA

0 = 5, and
where we have again taken the frequency ω = 2π/0.02. The time-
dependent variation of this external potential is shown in panel (b)
of Fig. 1. The system is initially prepared in an equilibrium state with
an average of 2.5 particles per unit area in the xy-plane and is then

driven out-of-equilibrium by the side-to-side oscillatory motion of
the Gaussian peak.

We begin by discussing panel (a) of Fig. 4, which shows
the value of the one-body density at the center of the harmonic
trap, ρ(z = 5, t), as a function of time. The green and red curves
show the predictions of force- and superadiabatic-DDFT, respec-
tively, where both theories predict a regime of transient relax-
ation before arriving at a nonequilibrium steady-state. The stars
are data from simulation, sampled at regularly spaced time inter-
vals, and the filled circles indicate the times at which we show
full density profiles in panels (b) and (c). The predictions of
force- and superadiabatic-DDFT shown in panel (a) reveal a much
greater discrepancy between the two theories than in the previ-
ously considered test-case (see Fig. 2). The superadiabatic-DDFT
is once again in very good agreement with the BD simulation
data and gives an accurate description of both the transient relax-
ation and the steady-state. In contrast, the transient predicted
by force-DDFT decays too rapidly and stabilizes to an erroneous
steady-state.
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While force-DDFT performs rather poorly, giving, at best,
a qualitative description, superadiabatic-DDFT gives an excellent
quantitative account of the BD data and captures very well the time-
scale of transient relaxation. The sweeping, back-and-forth motion
of the Gaussian peak induces a global flow involving frequent inter-
particle collisions, which mixes the particles as they repeatedly flow
over the moving potential barrier. This continual, global distur-
bance of the microstructure causes the nonequilibrium two-body
density to deviate significantly from the adiabatic two-body density
and thus generates strong superadiabatic effects. While the differ-
ences between the two theories are most pronounced during the
transient, they are still apparent in the steady-state, where the par-
ticles continue to undergo numerous collisions as they are forced
to move back-and-forth past their neighbors. This situation should
be contrasted with the steady-state of the previous test-case, where
superadiabatic effects were found to be small (see Fig. 2) due to the
relatively unhindered, small-amplitude, oscillatory motion of each
particle within its own local environment.

Panels (b) and (c) of Fig. 4 show theoretical density profiles
at different times, calculated using both force-DDFT [green-framed
panel (b)] and superadiabatic-DDFT [red-framed panel (c)]. The
times chosen are indicated by the filled circles in panel (a), where
we note the matching color scheme between the points and the
full density profiles. Due to the oscillatory motion of the Gaus-
sian peak, which initially moves to the right following the onset of
motion at t = 0, the density profiles are asymmetric about the min-
imum of the Gaussian trap. Consistent with our previous findings,
the superadiabatic-DDFT reacts slower to changes in the exter-
nal field than the force-DDFT; e.g., the central minimum in the
equilibrium profile is more slowly eroded by the motion of the
Gaussian peak. Indeed, for the later times shown, the force-DDFT
profiles are almost overlapping, reflecting the onset of the steady-
state, whereas the corresponding superadiabatic-DDFT profiles can
be easily distinguished from each other.

In Fig. 5, we compare density profiles predicted by
superadiabatic- and force-DDFT with BD simulation data. As
a reference for the eye, we also show the starting equilibrium
curves from force-DFT and Monte-Carlo simulation. In this figure,
it is clear that the nonequilibrium density profiles predicted by
superadiabatic-DDFT are in remarkably good agreement with the
simulation data and capture with high accuracy the global shape
of the profiles at all times considered. In contrast, force-DDFT
is not able to describe the time-evolution of the profiles in a
satisfactory way and yields a generally poor account of the packing
oscillations.

In this second test-case, the improvement of superadiabatic-
DDFT over force-DDFT is much more dramatic than in the previous
test-case since the superadiabatic forces, closely linked to the parti-
cle packing, stay relevant even in the steady-state regime. For such
dynamics, explicitly including the time-evolution of the two-body
density is very important to describe accurately the microstructural
changes in the driven system.

IV. DISCUSSION AND CONCLUSIONS
In this paper, the recently developed superadiabatic-DDFT10

was used to study the dynamics of a system of hard-spheres sub-

ject to a time-dependent external field. Our results show that
superadiabatic-DDFT provides an accurate description of structural
relaxation in fluids and reveal clearly the deficiencies of the more
simplistic force-DDFT method.3

Within the force-DDFT, the adiabatic two-body density is cal-
culated at each time-step and used to generate the one-body force
due to interparticle interactions. However, an undesirable conse-
quence of applying the adiabatic approximation at the one-body
level is that both ρ and ρ(2)ad follow an unphysical time-evolution
that does not respect the packing constraints imposed by interac-
tion potentials with a strong short-range repulsion. More concretely,
if we consider the time-evolution of the full many-particle sys-
tem, as calculated in BD simulation, then the functions ρ and ρ(2)ad
predicted by force-DDFT could not be obtained from statistical
averages over a physically realistic sequence of configurations. Even
if it were possible to reproduce these functions by back-engineering
some artificial configuration sequence, then this would likely involve
unphysical situations for which the particles overlap. In contrast, the
superadiabatic-DDFT prevents such unphysical overlaps due to the
explicit (non-integrated) appearance of the pair interaction potential
in Eq. (4). The error in superadiabatic-DDFT lies in the neglect of
subtle differences between higher-order correlations of the adiabatic
and nonequilibrium systems.

An alternative framework for treating superadiabatic dynamics
is provided by power functional theory (PFT),17,18 which formally
generalizes the variational approach of DFT to nonequilibrium.
Within PFT, all superadiabatic effects are described by an excess
power functional with a nonlocal dependence on the entire history
of both the one-body density and current. In principle, knowledge
of this excess functional would provide a closed, predictive theory
for the dynamics of the one-body density. However, in practice, the
complexity of the excess functional has prevented the construction
of any approximation capable of providing this closure. The fact
that PFT requires a temporally nonlocal excess power functional is
a natural consequence of using the one-body density and current as
relevant variables. The information lost in coarse-graining to these
one-body fields is compensated by the use of memory kernels, which
are generally difficult to approximate. The superadiabatic-DDFT
approach employed in this work identifies the one- and two-body
densities as the relevant variables for a coarse-grained description of
many-body Brownian dynamics. This provides detailed information
about the microstructure of the nonequilibrium fluid and enables
the formulation of a closed, time-local dynamical theory. Within
superadiabatic-DDFT, the flow history of the system is encoded in
the current value of the nonequilibrium two-body density without
the need for a memory kernel.

Since the collective motion in dense fluids, whether in- or
out-of-equilibrium, is dominated by the repulsive part of the inter-
particle interaction potential, we chose in the present work to focus
on the three-dimensional hard-sphere model. However, we empha-
size that our approach is by no means limited to hard-spheres and
can be applied without difficulty to systems interacting via any
pairwise additive interaction potential.

Two different time-dependent external potentials were consid-
ered. In the first case, the external field generated a local, periodic
compression of the system for which superadiabatic effects are
expected to be modest, such that the steady-states predicted by
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superadiabatic- and force-DDFT are very similar. This enabled us to
focus solely on the transient regime and demonstrate the improved
performance of the superadiabtic-DDFT over the force-DDFT. In
the second case, the external field induced a global flow in the system,
which generates strong superadiabatic effects in both the transient
regime and the steady-state. We again found that the superadiabatic-
DDFT predicts one-body density profiles in very good agreement
with the BD simulation data and performs far better than the
force-DDFT.

We thus conclude that superadiabatic-DDFT provides a reli-
able and accurate method to predict the dynamics of the one-body
density in systems driven by time-dependent external potentials.
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APPENDIX: FMT FOR THE TWO-BODY DENSITY

Within the fundamental measure theory (FMT), the excess
Helmholtz free energy functional is approximated by an integral
over a function of weighted densities,16

βFexc
hs [ρ] = ∫ dr1 Φ({nα(r1)}). (A1)

The original Rosenfeld version of FMT employs the following
approximate form for the reduced excess free energy density of the
hard-sphere system:

Φ = −n0 ln (1 − n3) +
n1n2 − n1 ⋅ n2

1 − n3
+

n3
2 − 3n2n2 ⋅ n2

24π(1 − n3)
2 . (A2)

The weighted densities are generated by convolution

nα(r1) = ∫ dr2ρ(r2)ωα(r12), (A3)

where r12 = r1 − r2 and the weight functions, ωα, are given by four
scalar functions

ω3(r) = Θ(R − ∣r∣), ω2(r) = δ(R − ∣r∣),

ω1(r) =
δ(R − ∣r∣)

4πR
, ω0(r) =

δ(R − ∣r∣)
4πR2 ,

and two vectors

ω2(r) = erδ(R − ∣r∣), ω1(r) = er
δ(R − ∣r∣)

4πR
,

where er = r/∣r∣ is a unit vector. The symbol ω is used here for all
weight functions, with vector functions distinguished from scalar
functions by using a bold font index in accordance with the notation
introduced in Ref. 19.

Within DFT, the equilibrium two-body direct correlation func-
tion is obtained by taking two functional derivatives of the excess
Helmholtz free energy, as given in Eq. (10). When applied to the
approximate Rosenfeld expression (A1), this yields19

c(2)eq (r1, r2; [ρeq]) = −∑
αβ
∫ dr3ωα(r31)Φ′′αβ(r3)ωβ(r32), (A4)

where Φ′′αβ = ∂
2Φ/∂nα∂nβ and the sums over α and β run over all

scalar and vector indices. From Eqs. (A2)–(A4), it is clear that the
two-body direct correlation function is determined purely by the
one-body density. Substitution of a nonequilibrium one-body den-
sity into the expression (A4) generates the adiabatic two-body direct
correlation function

c(2)ad (r1, r2, t) ≡ c(2)eq (r1, r2; [ρ(r, t)]). (A5)

Substitution of c(2)ad into the inhomogeneous OZ equation

had(r1, r2, t) = c(2)ad (r1, r2, t) + ∫ dr3had(r1, r3, t)

× ρ(r3, t)c(2)ad (r3, r2, t), (A6)

yields the adiabatic total correlation function had, from which the
adiabatic two-body density can easily be found using

ρ(2)ad (r1, r2, t) = ρ(r1, t)ρ(r2, t)(had(r1, r2, t) + 1). (A7)

We refer the reader to Ref. 19 for details of how to implement the
above scheme in cases for which the one-body density has either
planar or spherical symmetry.
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