1,133 research outputs found

    Quasiparticle Transformation During a Metal-Insulator Transition in Graphene

    Full text link
    Here we show, with simultaneous transport and photoemission measurements, that the graphene terminated SiC(0001) surface undergoes a metal-insulator transition (MIT) upon dosingwith small amounts of atomic hydrogen. We find the room temperature resistance increases by about 4 orders of magnitude, a transition accompanied by anomalies in the momentum-resolved spectral function including a non-Fermi Liquid behaviour and a breakdown of the quasiparticle picture. These effects are discussed in terms of a possible transition to a strongly (Anderson) localized ground state.Comment: 11 pages, 4 figure

    Kohn anomaly and interplay of electron-electron and electron-phonon interactions in epitaxial graphene

    Full text link
    The interplay of electron-phonon (el-ph) and electron-electron (el-el) interactions in epitaxial graphene is studied by directly probing its electronic structure. We found a strong coupling of electrons to the soft part of the A1g phonon evident by a kink at 150+/-15 meV, while the coupling of electrons to another expected phonon E2g at 195 meV can only be barely detected. The possible role of the el-el interaction to account for the enhanced coupling of electrons to the A1g phonon, and the contribution of el-ph interaction to the linear imaginary part of the self energy at high binding energy are also discussed. Our results reveal the dominant role of the A1g phonon in the el-ph interaction in graphene, and highlight the important interplay of el-el and el-ph interactions in the self energy of graphene.Comment: accepted to Phys. Rev.

    Report in the Grand River Eagle

    Get PDF
    A report in the Grand River Eagle that a committee was organized in Grand Rapids to help the worthy and enterprising pastor, the Rev. A. C. Van Raalte, and his people in their settlement. Some members of the committee were appointed to visit Holland. E. B. Bostwick was chairman and A. D. Rathbone, secretary.https://digitalcommons.hope.edu/vrp_1840s/1138/thumbnail.jp

    Nucleotide Sequence of a Pumpkin Phloem Lectin cDNA

    Full text link

    Syndecan-2 is a novel target of insulin-like growth factor binding protein-3 and is over-expressed in fibrosis

    Get PDF
    Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3. © 2012 Ruiz et al

    Dirac dispersion and non-trivial Berry's phase in three-dimensional semimetal RhSb3

    Full text link
    We report observations of magnetoresistance, quantum oscillations and angle-resolved photoemission in RhSb3_3, a unfilled skutterudite semimetal with low carrier density. The calculated electronic band structure of RhSb3_3 entails a Z2Z_2 quantum number ν0=0,ν1=ν2=ν3=1\nu_0=0,\nu_1=\nu_2=\nu_3=1 in analogy to strong topological insulators, and inverted linear valence/conduction bands that touch at discrete points close to the Fermi level, in agreement with angle-resolved photoemission results. Transport experiments reveal an unsaturated linear magnetoresistance that approaches a factor of 200 at 60 T magnetic fields, and quantum oscillations observable up to 150~K that are consistent with a large Fermi velocity (∼1.3×106\sim 1.3\times 10^6 ms−1^{-1}), high carrier mobility (∼14\sim 14 m2m^2/Vs), and small three dimensional hole pockets with nontrivial Berry phase. A very small, sample-dependent effective mass that falls as low as 0.015(7)0.015(7) bare masses scales with Fermi velocity, suggesting RhSb3_3 is a new class of zero-gap three-dimensional Dirac semimetal.Comment: 9 pages, 4 figure

    Anderson Transition in Disordered Graphene

    Full text link
    We use the regularized kernel polynomial method (RKPM) to numerically study the effect disorder on a single layer of graphene. This accurate numerical method enables us to study very large lattices with millions of sites, and hence is almost free of finite size errors. Within this approach, both weak and strong disorder regimes are handled on the same footing. We study the tight-binding model with on-site disorder, on the honeycomb lattice. We find that in the weak disorder regime, the Dirac fermions remain extended and their velocities decrease as the disorder strength is increased. However, if the disorder is strong enough, there will be a {\em mobility edge} separating {\em localized states around the Fermi point}, from the remaining extended states. This is in contrast to the scaling theory of localization which predicts that all states are localized in two-dimensions (2D).Comment: 4 page
    • …
    corecore