636 research outputs found
Estimation du nombre de tortues vertes femelles adultes Chelonia mydas par saison de ponte à Tromelin et Europa (Océan Indien) (1973-1985)
Bipolar querying of valid-time intervals subject to uncertainty
Databases model parts of reality by containing data representing properties of real-world objects or concepts. Often, some of these properties are time-related. Thus, databases often contain data representing time-related information. However, as they may be produced by humans, such data or information may contain imperfections like uncertainties. An important purpose of databases is to allow their data to be queried, to allow access to the information these data represent. Users may do this using queries, in which they describe their preferences concerning the data they are (not) interested in. Because users may have both positive and negative such preferences, they may want to query databases in a bipolar way. Such preferences may also have a temporal nature, but, traditionally, temporal query conditions are handled specifically. In this paper, a novel technique is presented to query a valid-time relation containing uncertain valid-time data in a bipolar way, which allows the query to have a single bipolar temporal query condition
Representing uncertainty regarding satisfaction degrees using possibility distributions
Evaluating flexible criteria on data leads to degrees of satisfaction. If a datum is uncertain, it can be uncertain to which degree it satisfies the criterion. This uncertainty can be modelled using a possibility distribution over the domain of possible degrees of satisfaction. In this work, we discuss the meaningfulness thereof by looking at the semantics of such a representation of the uncertainty. More specifically, it is shown that defuzzification of such a representation, towards usability in (multi-criteria) decision support systems, corresponds to expressing a clear attitude towards uncertainty (optimistic, pessimistic, cautious, etc.
Spectral and spatial imaging of the Be+sdO binary phi Persei
The rapidly rotating Be star phi Persei was spun up by mass and angular
momentum transfer from a now stripped-down, hot subdwarf companion. Here we
present the first high angular resolution images of phi Persei made possible by
new capabilities in longbaseline interferometry at near-IR and visible
wavelengths. We observed phi Persei with the MIRC and VEGA instruments of the
CHARA Array. Additional MIRC-only observations were performed to track the
orbital motion of the companion, and these were fit together with new and
existing radial velocity measurements of both stars to derive the complete
orbital elements and distance. The hot subdwarf companion is clearly detected
in the near-IR data at each epoch of observation with a flux contribution of
1.5% in the H band, and restricted fits indicate that its flux contribution
rises to 3.3% in the visible. A new binary orbital solution is determined by
combining the astrometric and radial velocity measurements. The derived stellar
masses are 9.6+-0.3Msol and 1.2+-0.2Msol for the Be primary and subdwarf
secondary, respectively. The inferred distance (186 +- 3 pc), kinematical
properties, and evolutionary state are consistent with membership of phi Persei
in the alpha Per cluster. From the cluster age we deduce significant
constraints on the initial masses and evolutionary mass transfer processes that
transformed the phi Persei binary system. The interferometric data place strong
constraints on the Be disk elongation, orientation, and kinematics, and the
disk angular momentum vector is coaligned with and has the same sense of
rotation as the orbital angular momentum vector. The VEGA visible continuum
data indicate an elongated shape for the Be star itself, due to the combined
effects of rapid rotation, partial obscuration of the photosphere by the
circumstellar disk, and flux from the bright inner disk.Comment: 16 pages, 6 figures, 1 Anne
An investigation of the close environment of beta Cep with the VEGA/CHARA interferometer
High-precision interferometric measurements of pulsating stars help to
characterize their close environment. In 1974, a close companion was discovered
around the pulsating star beta Cep using the speckle interferometry technique
and features at the limit of resolution (20 milli-arcsecond or mas) of the
instrument were mentioned that may be due to circumstellar material. Beta Cep
has a magnetic field that might be responsible for a spherical shell or
ring-like structure around the star as described by the MHD models. Using the
visible recombiner VEGA installed on the CHARA long-baseline interferometer at
Mt. Wilson, we aim to determine the angular diameter of beta Cep and resolve
its close environment with a spatial resolution up to 1 mas level. Medium
spectral resolution (R=6000) observations of beta Cep were secured with the
VEGA instrument over the years 2008 and 2009. These observations were performed
with the S1S2 (30m) and W1W2 (100m) baselines of the array. We investigated
several models to reproduce our observations. A large-scale structure of a few
mas is clearly detected around the star with a typical flux relative
contribution of 0.23 +- 0.02. Our best model is a co-rotational geometrical
thin ring around the star as predicted by magnetically-confined wind shock
models. The ring inner diameter is 8.2 +- 0.8 mas and the width is 0.6 +- 0.7
mas. The orientation of the rotation axis on the plane of the sky is PA = 60 +-
1 deg, while the best fit of the mean angular diameter of beta Cep gives UD[V]
= 0.22 +- 0.05 mas. Our data are compatible with the predicted position of the
close companion of beta Cep. These results bring additional constraints on the
fundamental parameters and on the future MHD and asteroseismological models of
the star.Comment: Paper accepted for publication in A&A (in press
Time, spatial, and spectral resolution of the Halpha line-formation region of Deneb and Rigel with the VEGA/CHARA interferometer
BA-type supergiants are amongst the most optically-bright stars. They are
observable in extragalactic environments, hence potential accurate distance
indicators. Emission activity in the Halpha line of the BA supergiants Rigel
(B8Ia) and Deneb (A2Ia) is indicative of presence of localized time-dependent
mass ejections. Here, we employ optical interferometry to study the Halpha
line-formation region in these stellar environments. High spatial- (0.001
arcsec) and spectral- (R=30 000) resolution observations of Halpha were
obtained with the visible recombiner VEGA installed on the CHARA
interferometer, using the S1S2 array-baseline (34m). Six independent
observations were done on Deneb over the years 2008 and 2009, and two on Rigel
in 2009. We analyze this dataset with the 1D non-LTE radiative-transfer code
CMFGEN, and assess the impact of the wind on the visible and near-IR
interferometric signatures, using both Balmer-line and continuum photons. We
observe a visibility decrease in Halpha for both Rigel and Deneb, suggesting
that the line-formation region is extended (1.5-1.75 R*). We observe a
significant visibility decrease for Deneb in the SiII6371 line. We witness time
variations in the differential phase for Deneb, implying an inhomogeneous and
unsteady circumstellar environment, while no such variability is seen in
differential visibilities. Radiative-transfer modeling of Deneb, with allowance
for stellar-wind mass loss, accounts fairly well for the observed decrease in
the Halpha visibility. Based on the observed differential visibilities, we
estimate that the mass-loss rate of Deneb has changed by less than 5%
Improving the surface brightness-color relation for early-type stars using optical interferometry
The aim of this work is to improve the SBC relation for early-type stars in
the color domain, using optical interferometry.
Observations of eight B- and A-type stars were secured with the VEGA/CHARA
instrument in the visible. The derived uniform disk angular diameters were
converted into limb darkened angular diameters and included in a larger sample
of 24 stars, already observed by interferometry, in order to derive a revised
empirical relation for O, B, A spectral type stars with a V-K color index
ranging from -1 to 0. We also took the opportunity to check the consistency of
the SBC relation up to using 100 additional measurements. We
determined the uniform disk angular diameter for the eight following stars:
Ori, Per, Cyg, Her, Aql, Peg,
Lyr, and Cyg with V-K color ranging from -0.70 to 0.02 and
typical precision of about . Using our total sample of 132 stars with
colors index ranging from about to , we provide a revised SBC
relation. For late-type stars (), the results are consistent
with previous studies. For early-type stars (), our new
VEGA/CHARA measurements combined with a careful selection of the stars
(rejecting stars with environment or stars with a strong variability), allows
us to reach an unprecedented precision of about 0.16 magnitude or
in terms of angular diameter.Comment: 13 pages, 5 figures, accepted for publication in A&
The fundamental parameters of the roAp star Equulei
Physical processes working in the stellar interiors as well as the evolution
of stars depend on some fundamental stellar properties, such as mass, radius,
luminosity, and chemical abundances. A classical way to test stellar interior
models is to compare the predicted and observed location of a star on
theoretical evolutionary tracks in a H-R diagram. This requires the best
possible determinations of stellar mass, radius, luminosity and abundances. To
derive its fundamental parameters, we observed the well-known rapidly
oscillating Ap star, Equ, using the visible spectro-interferometer
VEGA installed on the optical CHARA array. We computed the calibrated squared
visibility and derived the limb-darkened diameter. We used the whole energy
flux distribution, the parallax and this angular diameter to determine the
luminosity and the effective temperature of the star. We obtained a
limb-darkened angular diameter of 0.564~~0.017~mas and deduced a radius of
~=~2.20~~0.12~. Without considering the multiple
nature of the system, we derived a bolometric flux of erg~cm~s and an effective temperature of
7364~~235~K, which is below the effective temperature that has been
previously determined. Under the same conditions we found a luminosity of
~=~12.8~~1.4~. When the contribution of the closest
companion to the bolometric flux is considered, we found that the effective
temperature and luminosity of the primary star can be, respectively, up to
~100~K and up to ~0.8~L smaller than the values mentioned
above.These new values of the radius and effective temperature should bring
further constraints on the asteroseismic modelling of the star.Comment: Accepted by A&
LITpro: a model fitting software for optical interferometry
9 pagesInternational audienceLITpro is a software for fitting models on data obtained from various stellar optical interferometers, like the VLTI. As a baseline, for modeling the object, it provides a set of elementary geometrical and center-to-limb darkening functions, all combinable together. But it is also designed to make very easy the implementation of more specific models with their own parameters, to be able to use models closer to astrophysical considerations. So LITpro only requires the modeling functions to compute the Fourier transform of the object at given spatial frequencies, and wavelengths and time if needed. From this, LITpro computes all the necessary quantities as needed (e.g. visibilities, spectral energy distribution, partial derivatives of the model, map of the object model). The fitting engine, especially designed for this kind of optimization, is based on a modified Levenberg-Marquardt algorithm and has been successfully tested on real data in a prototype version. It includes a Trust Region Method, minimizing a heterogeneous non-linear and non-convex criterion and allows the user to set boundaries on free parameters. From a robust local minimization algorithm and a starting points strategy, a global optimization solution is effectively achieved. Tools have been developped to help users to find the global minimum. LITpro is also designed for performing fitting on heterogeneous data. It will be shown, on an example, how it fits simultaneously interferometric data and spectral energy distribution, with some benefits on the reliability of the solution and a better estimation of errors and correlations on the parameters. That is indeed necessary since present interferometric data are generally multi-wavelengths
- …
