2,175 research outputs found
Multi-site Event Discrimination in Large Liquid Scintillation Detectors
Simulation studies have been carried out to explore the ability to
discriminate between single-site and multi-site energy depositions in large
scale liquid scintillation detectors. A robust approach has been found that is
predicted to lead to a significant statistical separation for a large variety
of event classes, providing a powerful tool to discriminate against backgrounds
and break important degeneracies in signal extraction. This has particularly
relevant implications for liquid scintillator searches for neutrinoless double
beta decay () from Te and Xe, where it is
possible for a true signal to be distinguished from most
radioactive backgrounds (including those from cosmogenic production) as well as
unknown gamma lines from the target isotope.Comment: 20 pages, 10 figure
Probing the Planck Scale with Neutrino Oscillations
Quantum gravity "foam", among its various generic Lorentz non-invariant
effects, would cause neutrino mixing. It is shown here that, if the foam is
manifested as a nonrenormalizable effect at scale M, the oscillation length
generically decreases with energy as (E/M)^(-2). Neutrino observatories and
long-baseline experiments should have therefore already observed foam-induced
oscillations, even if M is as high as the Planck energy scale. The null
results, which can be further strengthened by better analysis of current data
and future experiments, can be taken as experimental evidence that Lorentz
invariance is fully preserved at the Planck scale, as is the case in critical
string theory.Comment: 11 pages, 2 figures. Final version published in PRD. 1 figure,
references, clarifications and explanations added. Results unchange
A Survey for Massive Giant Planets in Debris Disks with Evacuated Inner Cavities
The commonality of collisionally replenished debris around main sequence
stars suggests that minor bodies are frequent around Sun-like stars. Whether or
not debris disks in general are accompanied by planets is yet unknown, but
debris disks with large inner cavities - perhaps dynamically cleared - are
considered to be prime candidates for hosting large-separation massive giant
planets. We present here a high-contrast VLT/NACO angular differential imaging
survey for eight such cold debris disks. We investigated the presence of
massive giant planets in the range of orbital radii where the inner edge of the
dust debris is expected. Our observations are sensitive to planets and brown
dwarfs with masses >3 to 7 Jupiter mass, depending on the age and distance of
the target star. Our observations did not identify any planet candidates. We
compare the derived planet mass upper limits to the minimum planet mass
required to dynamically clear the inner disks. While we cannot exclude that
single giant planets are responsible for clearing out the inner debris disks,
our observations constrain the parameter space available for such planets. The
non-detection of massive planets in these evacuated debris disks further
reinforces the notion that the giant planet population is confined to the inner
disk (<15 AU).Comment: Accepted for publication in Ap
The SISO CSPI PDG standard for commercial off-the-shelf simulation package interoperability reference models
For many years discrete-event simulation has been used to analyze production and logistics problems in manufactur-ing and defense. Commercial-off-the-shelf Simulation Packages (CSPs), visual interactive modelling environ-ments such as Arena, Anylogic, Flexsim, Simul8, Witness, etc., support the development, experimentation and visua-lization of simulation models. There have been various attempts to create distributed simulations with these CSPs and their tools, some with the High Level Architecture (HLA). These are complex and it is quite difficult to assess how a set of models/CSP are actually interoperating. As the first in a series of standards aimed at standardizing how the HLA is used to support CSP distributed simula-tions, the Simulation Interoperability Standards Organiza-tion’s (SISO) CSP Interoperability Product Development Group (CSPI PDG) has developed and standardized a set of Interoperability Reference Models (IRM) that are in-tended to clearly identify the interoperability capabilities of CSP distributed simulations
Effects of force load, muscle fatigue and extremely low frequency magnetic stimulation on EEG signals during side arm lateral raise task
Objective: This study was to quantitatively investigate the effects of force load, muscle fatigue and extremely low frequency (ELF) magnetic stimulation on electroencephalography (EEG) signal features during side arm lateral raise task.
Approach: EEG signals were recorded by a BIOSEMI Active Two system with Pin-Type active-electrodes from 18 healthy subjects when they performed the right arm side lateral raise task (90° away from the body) with three different loads (0 kg, 1 kg and 3 kg; their order was randomized among the subjects) on the forearm. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as non-fatigue status and the last 10 s before the subject was exhausted as fatigue status. The subject was then given a 5 min resting between different loads. Two days later, the same experiment was performed on each subject except that ELF magnetic stimulation was applied to the subject's deltoid muscle during the 5 min resting period. EEG features from C3 and C4 electrodes including the power of alpha, beta and gamma and sample entropy were analyzed and compared between different loads, non-fatigue/fatigue status, and with/without ELF magnetic stimulation.
Main results: The key results were associated with the change of the power of alpha band. From both C3-EEG and C4-EEG, with 1 kg and 3 kg force loads, the power of alpha band was significantly smaller than that from 0 kg for both non-fatigue and fatigue periods (all p 0.05 for all the force loads except C4-EEG with ELF simulation). The power of alpha band at fatigue status was significantly increased for both C3-EEG and C4-EEG when compared with the non-fatigue status (p 0.05, except between non-fatigue and fatigue with magnetic stimulation in gamma band of C3-EEG at 1 kg, and in the SampEn at 1 kg and 3 kg force loads from C4-EEG).
Significance: Our study comprehensively quantified the effects of force, fatigue and the ELF magnetic stimulation on EEG features with difference forces, fatigue status and ELF magnetic stimulation
Chandra Spectra of the Soft X-ray Diffuse Background
We present an exploratory Chandra ACIS-S3 study of the diffuse component of
the Cosmic X-ray Background in the 0.3-7 keV band for four directions at high
Galactic latitudes, with emphasis on details of the ACIS instrumental
background modeling. Observations of the dark Moon are used to model the
detector background. A comparison of the Moon data and the data obtained with
ACIS stowed outside the focal area showed that the dark Moon does not emit
significantly in our band. Point sources down to 3 10^-16 erg/s/cm2 in the
0.5-2 keV band are excluded in our two deepest observations. We estimate the
contribution of fainter, undetected sources to be less than 20% of the
remaining CXB flux in this band in all four pointings. In the 0.3-1 keV band,
the diffuse signal varies strongly from field to field and contributes between
55% and 90% of the total CXB signal. It is dominated by emission lines that can
be modeled by a kT=0.1-0.4 keV plasma. In particular, the two fields located
away from bright Galactic features show a prominent line blend at E=580 eV (O
VII + O VIII) and a possible line feature at E~300 eV. The two pointings toward
the North Polar Spur exhibit a brighter O blend and additional bright lines at
730-830 eV (Fe XVII). We measure the total 1-2 keV flux of (1.0-1.2 +-0.2)
10^-15 erg/s/cm2/arcmin (mostly resolved), and the 2-7 keV flux of (4.0-4.5
+-1.5) 10^-15 erg/s/cm2/arcmin. At E>2 keV, the diffuse emission is consistent
with zero, to an accuracy limited by the short Moon exposure and systematic
uncertainties of the S3 background. Assuming Galactic or local origin of the
line emission, we put an upper limit of 3 10^-15 erg/s/cm2/arcmin on the 0.3-1
keV extragalactic diffuse flux.Comment: Minor changes and typo fixes to match journal version. 17 pages, 15
figures (most in color), uses emulateapj.sty. ApJ in pres
Characterization of the Benchmark Binary NLTT 33370
We report the confirmation of the binary nature of the nearby, very low-mass
system NLTT 33370 with adaptive optics imaging and present resolved
near-infrared photometry and integrated light optical and near-infrared
spectroscopy to characterize the system. VLT-NaCo and LBTI-LMIRCam images show
significant orbital motion between 2013 February and 2013 April. Optical
spectra reveal weak, gravity sensitive alkali lines and strong lithium 6708
Angstrom absorption that indicate the system is younger than field age.
VLT-SINFONI near-IR spectra also show weak, gravity sensitive features and
spectral morphology that is consistent with other young, very low-mass dwarfs.
We combine the constraints from all age diagnostics to estimate a system age of
~30-200 Myr. The 1.2-4.7 micron spectral energy distribution of the components
point toward T_eff=3200 +/- 500 K and T_eff=3100 +/- 500 K for NLTT 33370 A and
B, respectively. The observed spectra, derived temperatures, and estimated age
combine to constrain the component spectral types to the range M6-M8.
Evolutionary models predict masses of 113 +/- 8 M_Jup and 106 +/- 7 M_Jup from
the estimated luminosities of the components. KPNO-Phoenix spectra allow us to
estimate the systemic radial velocity of the binary. The Galactic kinematics of
NLTT 33370AB are broadly consistent with other young stars in the Solar
neighborhood. However, definitive membership in a young, kinematic group cannot
be assigned at this time and further follow-up observations are necessary to
fully constrain the system's kinematics. The proximity, age, and late-spectral
type of this binary make it very novel and an ideal target for rapid, complete
orbit determination. The system is one of only a few model calibration
benchmarks at young ages and very low-masses.Comment: 25 pages, 3 tables, 13 figures, accepted for publication in The
Astrophysical Journa
The Lyot Project Direct Imaging Survey of Substellar Companions: Statistical Analysis and Information from Nondetections
The Lyot project used an optimized Lyot coronagraph with Extreme Adaptive
Optics at the 3.63m Advanced Electro-Optical System telescope (AEOS) to observe
86 stars from 2004 to 2007. In this paper we give an overview of the survey
results and a statistical analysis of the observed nondetections around 58 of
our targets to place constraints on the population of substellar companions to
nearby stars. The observations did not detect any companion in the substellar
regime. Since null results can be as important as detections, we analyzed each
observation to determine the characteristics of the companions that can be
ruled out. For this purpose we use a Monte Carlo approach to produce artificial
companions, and determine their detectability by comparison with the
sensitivity curve for each star. All the non-detection results are combined
using a Bayesian approach and we provide upper limits on the population of
giant exoplanets and brown dwarfs for this sample of stars. Our nondetections
confirm the rarity of brown dwarfs around solar-like stars and we constrain the
frequency of massive substellar companions (M>40Mjup) at orbital separation
between and 10 and 50 AU to be <20%.Comment: 32 pages, 11 figures, 2 tables. Published in the Astrophysical
Journa
Observers and Measurements in Noncommutative Spacetimes
We propose a "Copenhagen interpretation" for spacetime noncommutativity. The
goal is to be able to predict results of simple experiments involving signal
propagation directly from commutation relations. A model predicting an energy
dependence of the speed of photons of the order E/E_Planck is discussed in
detail. Such effects can be detectable by the GLAST telescope, to be launched
in 2006.Comment: 10 pp; v2: equivalence of observers explicitely stated; v3: minor
changes, references and remarks added, burst spreading with energy emphasized
as a signature rather than nois
- …
