738 research outputs found
Vibration of skewed cantilever plates and helicoidal shells
Theoretical vibration frequencies and mode shapes are obtained for skewed plates and helicoidal shells with a cantilever boundary. Using Hamilton's law of varying action, a power series solution is developed to obtain converged numerical results for the five lowest frequencies. Effects of geometrical variables such as aspect ratio, sweep angle and shell radius to thickness ratio are investigated. Accuracy of the solution method is substantiated by comparison with existing skewed plate spherical cap, and conical shell results
Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames
We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10[superscript 6] s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale
Soot Superaggregates from Flaming Wildfires and Their Direct Radiative Forcing
Wildfires contribute significantly to global soot emissions, yet their aerosol formation mechanisms and resulting particle properties are poorly understood and parameterized in climate models. The conventional view holds that soot is formed via the cluster-dilute aggregation mechanism in wildfires and emitted as aggregates with fractal dimension D(sub f) approximately equals 1.8 mobility diameter D(sub m) (is) less than or equal to 1 micron, and aerodynamic diameter D(sub a) (is) less than or equal to 300 nm. Here we report the ubiquitous presence of soot superaggregates (SAs) in the outflow from a major wildfire in India. SAs are porous, low-density aggregates of cluster-dilute aggregates with characteristic D(sub f) approximately equals 2.6,D(sub m) (is) greater than 1 micron, and D(sub a) is less than or equal to 300 nm that form via the cluster-dense aggregation mechanism.We present additional observations of soot SAs in wildfire smoke-laden air masses over Northern California, New Mexico, and Mexico City. We estimate that SAs contribute, per unit optical depth, up to 35% less atmospheric warming than freshly-emitted (D(sub f) approximately equals 1.8) aggregates, and approximately equals 90% more warming than the volume-equivalent spherical soot particles simulated in climate models
Did Three Strikes Cause the Recent Drop in California Crime: An Analysis of the California Attorney General\u27s Report
Apparatus for dry deposition of aerosols on snow
Deposition of light-absorbing aerosol on snow can drastically
change the albedo of the snow surface and the energy balance of the snowpack.
To study these important effects experimentally and to compare them with theory,
it is desirable to have an apparatus for such deposition experiments. Here,
we describe a simple apparatus to generate and evenly deposit light-absorbing
aerosols onto a flat snow surface. Aerosols are produced (combustion
aerosols) or entrained (mineral dust aerosols) and continuously transported
into a deposition chamber placed on the snow surface where they deposit onto
and into the snowpack, thereby modifying its surface reflectance and albedo.
We demonstrate field operation of this apparatus by generating black and
brown carbon combustion aerosols and entraining hematite mineral dust aerosol
and depositing them on the snowpack. Changes in spectral snow reflectance are
demonstrated qualitatively through pictures of snow surfaces after aerosol
deposition and quantitatively by measuring hemispherical-conical reflectance
spectra for the deposited areas and for adjacent snowpack in its natural
state. Additional potential applications for this apparatus are mentioned and
briefly discussed.</p
Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated
Recommended from our members
Depdose: An Interactive, Microcomputer Based Program to Calculate Doses From Exposure to Radionuclides Deposited on the Ground
DEPDOSE is an interactive, menu driven, microcomputer based program designed to rapidly calculate committed dose from radionuclides deposited on the ground. The program is designed to require little or no computer expertise on the part of the user. The program consisting of a dose calculation section and a library maintenance section. These selections are available to the user from the main menu. The dose calculation section provides the user with the ability to calculate committed doses, determine the decay time needed to reach a particular dose, cross compare deposition data from separate locations, and approximate a committed dose based on a measured exposure rate. The library maintenance section allows the user to review and update dose modifier data as well as to build and maintain libraries of radionuclide data, dose conversion factors, and default deposition data. The program is structured to provide the user easy access for reviewing data prior to running the calculation. Deposition data can either be entered by the user or imported from other databases. Results can either be displayed on the screen or sent to the printer
Genetic Organisation, Mobility and Predicted Functions of Genes on Integrated, Mobile Genetic Elements in Sequenced Strains of Clostridium difficile
Background: Clostridium difficile is the leading cause of hospital-associated diarrhoea in the US and Europe. Recently the incidence of C. difficile-associated disease has risen dramatically and concomitantly with the emergence of 'hypervirulent' strains associated with more severe disease and increased mortality. C. difficile contains numerous mobile genetic elements, resulting in the potential for a highly plastic genome. In the first sequenced strain, 630, there is one proven conjugative transposon (CTn), Tn5397, and six putative CTns (CTn1, CTn2 and CTn4-7), of which, CTn4 and CTn5 were capable of excision. In the second sequenced strain, R20291, two further CTns were described.Results: CTn1, CTn2 CTn4, CTn5 and CTn7 were shown to excise from the genome of strain 630 and transfer to strain CD37. A putative CTn from R20291, misleadingly termed a phage island previously, was shown to excise and to contain three putative mobilisable transposons, one of which was capable of excision. In silico probing of C. difficile genome sequences with recombinase gene fragments identified new putative conjugative and mobilisable transposons related to the elements in strains 630 and R20291. CTn5-like elements were described occupying different insertion sites in different strains, CTn1-like elements that have lost the ability to excise in some ribotype 027 strains were described and one strain was shown to contain CTn5-like and CTn7-like elements arranged in tandem. Additionally, using bioinformatics, we updated previous gene annotations and predicted novel functions for the accessory gene products on these new elements.Conclusions: The genomes of the C. difficile strains examined contain highly related CTns suggesting recent horizontal gene transfer. Several elements were capable of excision and conjugative transfer. The presence of antibiotic resistance genes and genes predicted to promote adaptation to the intestinal environment suggests that CTns play a role in the interaction of C. difficile with its human host
A Comparative Account of Institutional Approaches to Addressing Campus-Based Sexual Violence in Australia and Aotearoa New Zealand.
Sexual violence is prevalent on university campuses globally In this article we report a qualitative insider research study examining practices for addressing sexual violence at four universities across Australia and Aotearoa New Zealand We collected analysed and synthesised descriptive information about the practices at each institution We found unique institutional approaches that nonetheless share some commonalities yieldingseveral themes that are central to practice In reflecting on our findings we conclude with an outline of critical considerations and a call to action for future efforts to address campus based sexual violence particularly as this field remains underdeveloped across Australia and Aotearoa New Zealan
- …
