32 research outputs found
Wavelet Neural Networks: A Practical Guide
Wavelet networks (WNs) are a new class of networks which have been used with great success in a wide range of application. However a general accepted framework for applying WNs is missing from the literature. In this study, we present a complete statistical model identification framework in order to apply WNs in various applications. The following subjects were thorough examined: the structure of a WN, training methods, initialization algorithms, variable significance and variable selection algorithms, model selection methods and finally methods to construct confidence and prediction intervals. In addition the complexity of each algorithm is discussed. Our proposed framework was tested in two simulated cases, in one chaotic time series described by the Mackey-Glass equation and in three real datasets described by daily temperatures in Berlin, daily wind speeds in New York and breast cancer classification. Our results have shown that the proposed algorithms produce stable and robust results indicating that our proposed framework can be applied in various applications
Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic
Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer
Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: a meta-analysis.
Latin America and Caribbean (LAC) is a developing region characterized for its importance for global food security, producing 23 and 11% of the global beef and milk production, respectively. The region?s ruminant livestock sector however, is under scrutiny on environmental grounds due to its large contribution to enteric methane (CH4) emissions and influence on global climate change. Thus, the identification of effective CH4 mitigation strategies which do not compromise animal performance is urgently needed, especially in context of the Sustainable Development Goals (SDG) defined in the Paris Agreement of the United Nations. Therefore, the objectives of the current study were to: 1) collate a database of individual sheep, beef and dairy cattle records from enteric CH4 emission studies conducted in the LAC region, and 2) perform a meta-analysis to identify feasible enteric CH4 mitigation strategies, which do not compromise animal performance. After outlier?s removal, 2745 animal records (65% of the original data) from 103 studies were retained (from 2011 to 2021) in the LAC database. Potential mitigation strategies were classified into three main categories (i.e., animal breeding, dietary, and rumen manipulation) and up to three subcategories, totaling 34 evaluated strategies. A random effects model weighted by inverse variance was used (Comprehensive Meta-Analysis V3.3.070). Six strategies decreased at least one enteric CH4 metric and simultaneously increased milk yield (MY; dairy cattle) or average daily gain (ADG; beef cattle and sheep). The breed composition F1 Holstein × Gyr decreased CH4 emission per MY (CH4IMilk) while increasing MY by 99%. Adequate strategies of grazing management under continuous and rotational stocking decreased CH4 emission per ADG (CH4IGain) by 22 and 35%, while increasing ADG by 22 and 71%, respectively. Increased dietary protein concentration, and increased concentrate level through cottonseed meal inclusion, decreased CH4IMilk and CH4IGain by 10 and 20% and increased MY and ADG by 12 and 31%, respectively. Lastly, increased feeding level decreased CH4IGain by 37%, while increasing ADG by 171%. The identified effective mitigation strategies can be adopted by livestock producers according to their specific needs and aid LAC countries in achieving SDG as defined in the Paris Agreement
Hybrid Wavelet Model for Electricity Pool-price Forecasting in a Deregulated Electricity Market
Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting
We propose a wavelet multiscale decomposition-based autoregressive approach for the prediction of 1-h ahead load based on historical electricity load data. This approach is based on a multiple resolution decomposition of the signal using the non-decimated or redundant Haar à trous wavelet transform whose advantage is taking into account the asymmetric nature of the time-varying data. There is an additional computational advantage in that there is no need to recompute the wavelet transform (wavelet coefficients) of the full signal if the electricity data (time series) is regularly updated. We assess results produced by this multiscale autoregressive (MAR) method, in both linear and non-linear variants, with single resolution autoregression (AR), multilayer perceptron (MLP), Elman recurrent neural network (ERN) and the general regression neural network (GRNN) models. Results are based on the New South Wales (Australia) electricity load data that is provided by the National Electricity Market Management Company (NEMMCO)
A winter intercrop of faba bean and rapeseed for silage as a substitute for Italian ryegrass in rotation with maize
International audienceIn order to combine the ability of legumes to fix atmospheric nitrogen and the cruciferous capacities to mobilize soil nutrients and herbicide action, the aim of this work was to evaluate an alternative winter intercrop (faba bean-rapeseed) as a replacement of Italian ryegrass culture in a rotational system with maize as summer crop. For this purpose, two adjacent plots were used during three agronomic years (2011–2012, 2012–2013 and 2013–2014) to evaluate the agronomic performance through the forage production, nutritional composition of forage and silage, and the effects on soil fertility. The Italian ryegrass was cultivated under conventional management: using chemical fertilization and recommended dosages of herbicides. The faba bean-rapeseed intercrop was cultivated under an alternative management: organic fertilization and less herbicide supply. The intercrop provides higher forage yield per hectare than Italian ryegrass, with greater protein (kg ha−1) and similar energy (GJ ha−1) yields. The intercrop allows reducing the inputs of chemical fertilization and herbicides, and it has a positive effect on the balance of soil nutrients, especially increasing the potassium, calcium and magnesium contents. The results show that faba bean-rapeseed intercrop could be an alternative to the Italian ryegrass as winter crop
