6,998 research outputs found

    Combustion of hydrogen injected into a supersonic airstream (a guide to the HISS computer program)

    Get PDF
    A computer program based on a finite-difference, implicit numerical integration scheme is described for the prediction of hydrogen injected into a supersonic airstream at an angle ranging from normal to parallel to the airstream main flow direction. Results of calculations for flow and thermal property distributions were compared with 'cold flow data' taken by NASA/Langley and show excellent correlation. Typical results for equilibrium combustion are presented and exhibit qualitatively plausible behavior. Computer time required for a given case is approximately one minute on a CDC 7600. A discussion of the assumption of parabolic flow in the injection region is given which demonstrates that improvement in calculation in this region could be obtained by a partially-parabolic procedure which has been developed. It is concluded that the technique described provides an efficient and reliable means for analyzing hydrogen injection into supersonic airstreams and the subsequent combustion

    Prediction of hydrodynamics and chemistry of confined turbulent methane-air flames with attention to formation of oxides of nitrogen

    Get PDF
    A formulation of the governing partial differential equations for fluid flow and reacting chemical species in a tubular combustor is presented. A numerical procedure for the solution of the governing differential equations is described, and models for chemical equilibrium and chemical kinetics calculations are presented. The chemical equilibrium model is used to characterize the hydrocarbon reactions. The chemical kinetics model is used to predict the concentrations of the oxides of nitrogen. The combustor consists of a cylindrical duct of varying cross sections with concentric streams of gaseous fuel and air entering the duct at one end. Four sample cases with specified inlet and boundary conditions are considered, and the results are discusse

    Two-fluid models of turbulence

    Get PDF
    The defects of turbulence models are summarized and the importance of so-called nongradient diffusion in turbulent fluxes is discussed. The mathematical theory of the flow of two interpenetrating continua is reviewed, and the mathematical formulation of the two fluid model is outlined. Results from plane wake, axisymmetric jet, and combustion studies are shown

    Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    Get PDF
    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow

    Effect of gravity on methane-air combustion

    Get PDF
    Analytical and numerical techniques dealing with the theoretical description of the influence of zero and reduced gravitational acceleration on diffusion flames, with a view to improving understanding of fires in space vehicles, were developed in support of experimental work performed in this area. This was done in order to confirm qualitative understanding of the process, to determine the quantitative accuracy of numerical predictions, and to establish a mathematical model of the process for subsequent use as a predictive and exploratory tool. The following results were accomplished: (1) derivation of differential equations and boundary conditions describing the system, (2) details of the computations, using a FORTRAN computer program, for calculating the flow and heat and mass transfer in two dimensions (both steady and unsteady). It was shown that the experimental behavior can be reproduced with fair accuracy, provided that the time step is sufficiently short

    Combustion of hydrogen injected into a supersonic airstream (the SHIP computer program)

    Get PDF
    The mathematical and physical basis of the SHIP computer program which embodies a finite-difference, implicit numerical procedure for the computation of hydrogen injected into a supersonic airstream at an angle ranging from normal to parallel to the airstream main flow direction is described. The physical hypotheses built into the program include: a two-equation turbulence model, and a chemical equilibrium model for the hydrogen-oxygen reaction. Typical results for equilibrium combustion are presented and exhibit qualitatively plausible behavior. The computer time required for a given case is approximately 1 minute on a CDC 7600 machine. A discussion of the assumption of parabolic flow in the injection region is given which suggests that improvement in calculation in this region could be obtained by use of the partially parabolic procedure of Pratap and Spalding. It is concluded that the technique described herein provides the basis for an efficient and reliable means for predicting the effects of hydrogen injection into supersonic airstreams and of its subsequent combustion

    Prediction of hydrodynamics and chemistry of confined turbulent methane-air frames in a two concentric tube combustor

    Get PDF
    A formulation of the governing partial differential equations for fluid flow and reacting chemical species in a two-concentric-tube combustor is presented. A numerical procedure for the solution of the governing differential equations is described and models for chemical-equilibrium and chemical-kinetics calculations are presented. The chemical-equilibrium model is used to characterize the hydrocarbon reactions. The chemical-kinetics model is used to predict the concentrations of the oxides of nitrogen. The combustor considered consists of two coaxial ducts. Concentric streams of gaseous fuel and air enter the inlet duct at one end; the flow then reverses and flows out through the outer duct. Two sample cases with specified inlet and boundary conditions are considered and the results are discussed

    Unsteady flow in a rotated square tube bank

    Get PDF
    Peer reviewed: YesNRC publication: Ye

    Cost-Effectiveness Model Shows Superiority of Wireless Spinal Cord Stimulation Implantation Without a Separate Trial.

    Get PDF
    OBJECTIVE: We evaluated the cost-effectiveness of wireless spinal cord stimulation (Wireless SCS) with single stage direct to permanent implantation vs. screening with temporary electrodes and an external pulse generator followed by implantation of a system for long-term use (IPG SCS). MATERIALS AND METHODS: We created a cost model that takes a 2019 United States (U.S.) payer perspective and is based on IPG SCS cost models for subjects with chronic back and/or leg pain. Our six-month decision tree includes the screening trial period (success ≥50% relief) and leads to various levels of pain relief with or without complications for IPG SCS and Wireless SCS and without complications for conventional medical management (CMM). Every three months in the follow-on 15-year Markov model (with costs and quality-adjusted life years discounted 3.5% annually), subjects remain stable or transition to deteriorated health or death. Subjects who fail SCS receive CMM. After 60 Markov cycles, a 100,000-sample simulation reveals the impact of maximum willingness-to-pay (WTP) from 10,000to10,000 to 100,000 per quality-adjusted life year on net monetary benefit (NMB). Sensitivity analyses considered the impact of the Wireless SCS screening success rate, Wireless SCS device cost, and IPG SCS device longevity. RESULTS: Compared with IPG SCS, Wireless SCS offers higher clinical effectiveness at a lower cost and a higher NMB for our WTP thresholds and is, thus, dominant. Wireless SCS is also cost-effective compared with CMM. Results remain robust with 1) Wireless SCS screening success rates as low as 85% (dominant), 2) the cost of the Wireless SCS devices as high as $55,000 (cost-effective), and 3) IPG SCS devices lasting 12 years (dominant). CONCLUSIONS: In this model, compared with IPG SCS or with CMM, Wireless SCS is a superior strategy

    Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    Get PDF
    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 μ\mum). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller.Comment: SPIE conference proceeding
    • …
    corecore