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Cost-Effectiveness Model Shows Superiority of
Wireless Spinal Cord Stimulation Implantation
Without a Separate Trial
Richard B. North, MD* ; Harish S. Parihar, PhD RPh†;
Shawn D. Spencer, PhD RPh†; Arthur F. Spalding, MBA‡; Jane Shipley, BA*

Objective: We evaluated the cost-effectiveness of wireless spinal cord stimulation (Wireless SCS) with single stage “direct to
permanent” implantation vs. screening with temporary electrodes and an external pulse generator followed by implantation
of a system for long-term use (IPG SCS).

Materials and Methods: We created a cost model that takes a 2019 United States (U.S.) payer perspective and is based on
IPG SCS cost models for subjects with chronic back and/or leg pain. Our six-month decision tree includes the screening trial
period (success ≥50% relief) and leads to various levels of pain relief with or without complications for IPG SCS and Wireless
SCS and without complications for conventional medical management (CMM). Every three months in the follow-on 15-year
Markov model (with costs and quality-adjusted life years discounted 3.5% annually), subjects remain stable or transition to
deteriorated health or death. Subjects who fail SCS receive CMM. After 60 Markov cycles, a 100,000-sample simulation reveals
the impact of maximum willingness-to-pay (WTP) from $10,000 to $100,000 per quality-adjusted life year on net monetary
benefit (NMB). Sensitivity analyses considered the impact of the Wireless SCS screening success rate, Wireless SCS device cost,
and IPG SCS device longevity.

Results: Compared with IPG SCS, Wireless SCS offers higher clinical effectiveness at a lower cost and a higher NMB for our
WTP thresholds and is, thus, dominant. Wireless SCS is also cost-effective compared with CMM. Results remain robust with 1)
Wireless SCS screening success rates as low as 85% (dominant), 2) the cost of the Wireless SCS devices as high as $55,000
(cost-effective), and 3) IPG SCS devices lasting 12 years (dominant).

Conclusions: In this model, compared with IPG SCS or with CMM, Wireless SCS is a superior strategy.

Keywords: Cost-effectiveness, modeling study, SCS health economics, spinal cord stimulation, wireless SCS
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INTRODUCTION

In the United States (U.S.), where spinal cord stimulation (SCS)
is indicated as a treatment for chronic pain of the trunk and
limbs, almost all public and private health insurance plans cover-
ing the therapy require that a patient achieve at least 50% pain
relief during a screening trial with temporary electrodes before
receiving an implanted pulse generator for long-term use (IPG
SCS). Several clinicians have questioned the prognostic value of
discrete SCS screening trials (1–4), but few have examined their
impact on the cost-effectiveness of SCS therapy (1,5), even
though this is obviously a primary goal of the screening trial with
temporary electrodes, which is substantially less expensive than
implanting an SCS system for long-term use.
The attendant risk of infection with a screening strategy that

requires a percutaneous extension to an external pulse generator
has deterred U.S. clinicians from extending the trial beyond
approximately one week. New technology (Wireless SCS),
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however, facilitates single-stage complete implantation of an SCS
system (Freedom-8A SCS System, Stimwave®, Pompano Beach, FL,
USA) that is meant to remain in situ after a screening period that
can be extended as long as necessary to enhance effectiveness
by trying various stimulation parameters.
Given that the Wireless SCS system does not require a second

procedure to insert additional components in an operating room,
it is immediately apparent that Wireless SCS should be more cost-
effective than IPG SCS. To test this hypothesis, we developed an
economic model incorporating the clinical effectiveness data now
available for Wireless SCS (6).

METHODS

To ensure that our results are congruent with those of other
SCS cost-effectiveness studies (7–10), we adopted the assump-
tions and the decision analytic model popularly used for such
analyses.

Perspective and Setting
We conducted this analysis from the perspective of a U.S

health-care payer.

Description of Model Population
Our model population comprises 50% males and 50% females

at least 40 years of age with back or back and leg pain refractory
to medical management for at least 12 months after receiving a
diagnosis of failed back surgery syndrome (FBSS). Every SCS
patient undergoes a screening trial, either with Wireless SCS or
with IPG SCS.

Description of the Economic Model
We based our work on a decision analytic/Markov model publi-

shed in 2008 as part of the United Kingdom’s National Institute
for Health and Clinical Excellence (NICE) health technology assess-
ment of the cost-effectiveness of a IPG SCS system (10). The plat-
form for our model is TreeAge Pro 2018, R2 (11).
Our decision tree (Fig. 1) has three main branches: one begins

with a Wireless SCS screening trial, the second with an IPG SCS
screening trial, and the third with conventional medical manage-
ment (CMM). The comparison of Wireless SCS and IPG SCS allows
us to evaluate the cost-effectiveness of one treatment strategy
vs. the other. The comparison with CMM validates our model
against previously published studies (7–10) and quantifies the
cost-effectiveness of the SCS strategies vs. CMM.
The decision tree represents the therapeutic outcomes during

the first six months of treatment, which includes the SCS screen-
ing trial. A patient achieves SCS screening trial success by
reporting at least 50% reduction in pain from baseline on a pain
rating scale. Patients who fail the screening trial move to CMM as
do those who fail longer-term treatment. Figure 1 illustrates the
pathways that lead to the possible health states for each branch
at the end of the decision tree period, and Table 1 displays the
assumed trial success rate, complication rate during the decision
tree period, and probability of leaving the decision tree in a spe-
cific health state (6,9,12).
During the decision tree period, we assume the following:

• IPG SCS patients receive two eight-contact electrodes, placed per-
cutaneously with an external segment of the lead fixed to the skin.

• Wireless SCS patients receive two eight-contact electrodes
anchored percutaneously and tunneled to a nearby subcutane-
ous receiver, with no emerging percutaneous component.

2
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Figure 1. The first six months of treatment are represented by a decision tree that illustrates pathways to potential outcomes for patients receiving IPG SCS,
Wireless SCS, or CMM alone. Success and optimal pain relief are defined as >50% pain reduction from baseline on a pain rating scale; suboptimal pain relief is
more than zero and <50% pain reduction.
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• After the screening trial, the electrodes are removed from all
IPG SCS patients, and those who had a successful trial receive
two new percutaneous electrodes tunneled to an IPG for long-
term use. In patients receiving Wireless SCS, the system
implanted during the screening period remains in situ for long-
term use.

• All Wireless SCS and IPG SCS patients who fail the screening
trial receive CMM.

• Recovery from a complication will not affect the outcome; that
is, the patient stays in the same health state “with
complications.”

• All patients survive.

Following the decision tree period, our patients progress
through a Markov model (Fig. 2) that has a 15-year time horizon
with three-month cycles. At the end of each cycle, patients either
(1) die, (2) remain in a state of optimal or suboptimal pain relief,
or (3) transition to a worse state. Table 2 presents the annual tran-
sition probabilities (7). SCS patients with no pain relief transition
to CMM and experience optimal, suboptimal, or no pain relief

with that treatment. We assume an annual complication rate dur-
ing the Markov period of 18% for each SCS strategy (12) (with the
conservative assumption that this rate does not decrease over
time) and zero for CMM (7,9), an annual mortality rate of 0.94%
(7), IPG SCS device longevity of nine years (13), and Wireless SCS
external transmitter longevity of nine years.

Cost Data
All costs (Table 3) are in U.S dollars. The costs for IPG SCS and

CMM are from a published report (9), and the costs for Wireless
SCS are from the manufacturer and insurance reimbursement
records. We conservatively assume no complication costs associ-
ated with CMM (7,9). All costs were converted to U.S dollars using
the federal reserve exchange rate (14).

Utility Values
Utility values range from 1 representing perfect health to 0 rep-

resenting death (e.g., 0.168 means that one year with no pain
relief equals 16.8% of a year in perfect health). We use utility
values published by Simpson et al. (7) and adopted by Taylor
et al. (8) and Annemans et al. (9) to quantify the quality of life
associated with each health state (Table 4).

Discounting During the Markov Model Period
After the first year in the Markov model, we discount costs and

quality-adjusted life years (QALYs) at an annual rate of 3.5% (7–9).

3Figure 2. The 15 years following the decision tree period are represented by a Markov model. The definitions of optimal (> 50% reduction from baseline) and
suboptimal (< 50% reduction) pain relief remain the same, as does the progression of SCS failure to CMM.

Table 2. Annual Probability of Transitioning Between Health States
During the Markov Model Period.*

Wireless SCS IPG SCS CMM

Optimal to no pain relief 0.0324 0.0324 0
Suboptimal to no pain relief 0.0324 0.0324 0
Optimal to suboptimal pain relief 0 0 0
Mortality rate 0.0094 0.0094 0.0094

*Source is Simpson et al., in their table 30 (7).

Table 1. Decision Tree Probabilities (%).

Wireless
SCS*

IPG
SCS†

CMM‡

Trial success rate 92.0 86.7 N/A
Primary endpoint optimal pain relief 76.0 73.7 9.1
Complication rate§ 15.7 15.7 0
Optimal pain relief no complications 64.1 62.1 9.1
Optimal pain relief with complications 11.9 11.6 N/A
Suboptimal pain relief no complications¶ 20.2 22.2 90.9
Suboptimal pain relief with complications 3.8 4.1 N/A

*Wireless SCS pain relief from Bolash et al. Figures 6 and 7 (6).
†IPG SCS pain relief from Van Buyten et al. (12).
‡CMM from Annemans et al. (9).
§SCS complication rate from Van Buyten et al. (12). Multiplying this rate
by the rate of optimal pain relief yields optimal pain relief with compli-
cations and subtracting this product from optimal pain relief yields
optimal pain relief without complications.
¶Suboptimal pain relief is 100% minus optimal pain relief, with the
breakdown for with/without complications calculated as for optimal
pain relief.
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Determining Cost Effectiveness
The difference in the cost of the therapies (incremental cost)

divided by the difference in QALYs generated from 60 Markov
cycles (four cycles per year for 15 years) yields the incremental
cost-effectiveness ratio (ICER).

Determining Net Monetary Benefit
A Monte Carlo simulation with 100,000 samples was performed

for the Markov cohort analysis. In addition to the ICERs, the analysis

generated the cost-effectiveness scatterplots and revealed the
impact of willingness-to-pay (WTP) per QALY on net monetary ben-
efit (NMB) (15,16).

Analyzing Sensitivity
With deterministic sensitivity analyses, we vary three factors

that might have an impact on cost-effectiveness: (1) the Wireless
SCS screening success rate from 85 to 100% (the base case is
92%), (2) the Wireless SCS device cost from $15,000 to $55,000
(approximately twice the base cost of $26,757), and (3) the nine-
year base IPG replacement for IPG SCS from two to 12 years.

RESULTS

In our model, Wireless SCS results in higher clinical effective-
ness at a lower cost when compared with IPG SCS. As represented
in Table 5, Wireless SCS also offers a higher NMB compared with
IPG SCS. Wireless SCS generates a negative ICER and is a domi-
nant strategy compared with IPG SCS (Table 6).
Figure 3 displays the cost-effectiveness of the three strategies

and shows that Wireless SCS dominates IPG SCS. Our finding that
both SCS strategies are cost-effective vs. CMM confirms outcomes
reported in previous SCS cost models (e.g., refs. 8,9).
Wireless SCS also has a higher NMB compared with IPG SCS in

the range of WTP thresholds from $10,000 to $100,000 per QALY,
indicating that Wireless SCS provides the best value for money
spent (Fig. 4). At the WTP threshold of $50,000, for example, Wire-
less SCS provides a NMB of $68,488 vs. $38,458 for IPG SCS. When
the WTP increases to $100,000, Wireless SCS provides a NMB of
$328,065 vs. $289,035 for IPG SCS.

Sensitivity Analyses
Table 7 lists the parameters and results of deterministic sensi-

tivity analyses of three variables considered to have an impact on
SCS cost: (1) the trial success rate, (2) device cost, and (3) IPG bat-
tery life. The incremental net monetary benefit (INMB) of Wireless
SCS vs. IPG SCS is positive (in other words, Wireless SCS is cost-
effective) over the complete range of parameters in the sensitivity
analyses (Figs. 5–8). The INMB tornado diagram (Fig. 5) illustrates
the impact on the INMB associated with Wireless SCS vs. IPG SCS
when assumptions about variables change. Figure 5, thus, pre-
sents the relative cost-effectiveness of these two strategies.
In terms of the ICER, Wireless SCS vs. IPG SCS remains a domi-

nant strategy when the Wireless SCS trial success rate stays at or
above 84%, which is below the IPG SCS trial success rate of

4

Table 3. Cost Inputs.*

Base case
value ($)

IPG SCS trial with two percutaneous electrode arrays 6,421
Wireless SCS implant for trial and potential long-term use 26,757
Removal of temporary electrodes after failed IPG SCS trial 0
Removal of Wireless SCS component after failed trial† 0
Implant of IPG SCS system for long-term use 26,757
IPG SCS replacement after complication 26,757
SCS follow-up after six months (annual) 13,649
Wireless SCS external transmitter replacement 4,501
IPG SCS complication 1,057‡

Wireless SCS complication 1,057‡

CMM first six months§ 5,897
CMM after six months (annual)§ 11,794
CMM complication (conservative assumption) 0

*These costs represent reimbursements; thus, means and SDs are not
appropriate.
†Simpson et al. (7) report a cost of 1800 £ to remove a trial electrode;
but as indicated here, removal of percutaneous trial electrodes is not
reimbursable in the United States.
‡Converted into 2019 U.S. dollars from the report by Annemans et al.
(9) of 622 £ based on Simpson et al. (7).
§Annemans et al. (9).

Table 4. Utilities.*

Perfect health 1
Optimal pain relief without complication 0.598
Optimal pain relief with complication 0.528
Suboptimal pain relief with or without a complication 0.258
No pain relief 0.168
Dead 0

*First reported by Simpson et al. (7); subsequently adopted by
others (8,9).

Table 5. Cost Effectiveness.

Wireless SCS IPG SCS CMM

Cost ($) 184,206 204,092 140,656
Effectiveness 5.19 5.01 3.14
NMB($) (WTP $50,000) 75,371 46,485 16,211

NMB, net monetary benefit, summarizes the value of an intervention inmon-
etary terms when a WTP, willingness-to-pay, threshold per unit of benefit is
known. NMB is calculated as (effectiveness × WTP threshold) – incremental
cost (NMB reported here reflects calculation without rounding-off). A higher
NMB represents amore cost-effective strategy at the sameWTP.

Table 6. Incremental Cost-effectiveness.

Wireless SCS
vs. IPG SCS

Wireless SCS
vs. CMM

IPG SCS
vs. CMM

Incremental cost ($) −19,886 43,549 63,435
Incremental effectiveness 0.180 2.05 1.87
ICER ($) Dominant 21,200 33,847
INMB ($) 28,886 59,160 30,274

ICER, incremental cost-effectiveness ratio; INMB, incremental net mone-
tary benefit, which can be calculated as: INMBC-B = NMBC - NMBB,
where C refers to a comparator (Wireless SCS) and B refers to the base-
line (IPG SCS).
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86.7%. When the cost of Wireless SCS is varied from $15,000 to
$55,000, the result is either dominant or cost-effective. When the
cost range is between $15,000 and $48,334, Wireless SCS domi-
nates IPG SCS. When the cost is in the range of $48,334 to
$55,000, Wireless SCS is cost-effective vs. IPG SCS, as the ICER is
positive but below the WTP threshold of $50,000 (the maximum

ICER value is $40,074 when the cost of Wireless SCS is $55,000).
Wireless SCS remains dominant through all variations of the IPG
replacement interval (2–12 years).

DISCUSSION

Our economic analysis shows that, from the U.S. payer perspec-
tive, a single-stage procedure with Wireless SCS is more cost-
effective than the current longstanding practice of conducting an
SCS screening trial with temporary electrodes followed in success-
ful cases by implantation of new electrodes and an IPG. This prac-
tice was motivated by a desire to improve cost-effectiveness;
thus, a short review of the history of SCS screening trials will add
context to our findings.
SCS screening trials using minimally invasive percutaneous

electrodes were introduced in the mid-1970’s (17,18). By 1979, in
an obvious attempt to avoid the expense and morbidity of
implantation of a complete SCS system in nonresponders, the U.S.
Department of Health and Human Services required demonstra-
tion of pain relief during a screening trial as a condition of reim-
bursement by Medicare for SCS permanent systems. This health
economic rationale has driven the policy of almost all payers ever
since, making SCS a two-stage procedure in the U.S.

5

Figure 4. Net monetary benefit (NMB) versus willingness to pay (WTP).

Table 7. Deterministic Sensitivity Analyses Parameters and Results.

Wireless
SCS trial
success rate %

INMB $ Wireless SCS
device and
health-care
service
reimbursement $

INMB $ Years before IPG
replacement and
health-care service
reimbursement

INMB $

Low value 85 22,058 15,000 40,643 2 26,399
Base case 92 28,886 26,757 28,886 9 28,886
High value 100 36,592 55,000 3,643 12 140,395

INMB, incremental net monetary benefit.

$44,838/QALY

$40,729/QALY

$35,486/QALY

0

25,000

50,000

75,000

1,00,000

1,25,000

1,50,000

1,75,000

2,00,000

0 1 2 3 4 5 6

C
o

st
 (

U
.S

. $
)

Effectiveness (QALY)

CMM

IPG SCS

Wireless SCS

Figure 3. Cost-effectiveness graph showing that Wireless SCS is dominant compared with IPG SCS and that both SCS therapies provide a lower cost/QALY
versus CMM.
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Because an indwelling trial electrode with a percutaneous
extension connecting the electrode to an external pulse generator
carries a risk of infection, SCS screening trials are limited in dura-
tion. In contrast, Wireless SCS technology that has been available
since 2015 allows the electrodes, supporting electronics, and a
receiver to be placed in a minimally invasive fashion initially,
enabling a single-stage, “direct-to-permanent” implantation (19)
and offering the opportunity to redefine SCS trials (20). Such
single-stage SCS implantation allows the “trial” to continue for a
extended period, months if needed, for example, to try a new
waveform or combination of waveforms to optimize pain relief.
This redefinition is welcome because clinicians have long

questioned the validity and utility of SCS screening trials. First,
such trials should have high sensitivity so as not to deny treat-
ment to those who would benefit (false negatives). Oakley et al.,
for example, reported long-term success in at least a third of a
small group of patients who received an implanted SCS system

for chronic use despite having failed their screening trials (3). Sec-
ond, screening trials should have high specificity to avoid the
costs of equipment and morbidity of implantation in patients
who will fail before achieving useful results (false positives). SCS
failures soon after implantation remain common notwithstanding
successful trials. Accordingly, for many years, some clinicians have
advocated single-stage implantation of IPG SCS systems after “on-
table trials” conducted intraoperatively, accepting the high initial
cost and reasoning that their observed success rates are suffi-
ciently high that neither the additional expense nor the potential
morbidity of staged procedures is justifiable (2,4).
To explore the cost consequences of requiring an SCS screen-

ing trial, Duarte and Thomson created a decision analytic model
applicable to the United Kingdom’s National Health Service (NHS)
(5). This model showed that in cases when the potential IPG

6
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would be nonrechargeable, screening trials that ruled out more
than 45% of patients with the least expensive and 15% with the
most expensive equipment would reduce costs. For rechargeable
generators, the failure rates that would justify a trial would be
26% with the least expensive and 15% with the most expensive
equipment. Had the model included the additional expense of
implanting new electrode(s) after the trial, as is usual in the
United States, the trial failure rates required to produce a positive
financial impact for the NHS would have been lower. In other
words, the more costly the second stage of SCS, the higher the
screening trial success rate needed to justify the expense of the
trial.
Our Wireless SCS trial success rate was only slightly higher than

the IPG SCS success rate. Even if the success rate had been the
same or lower for Wireless SCS, however, the cost consequences
of using the Wireless system would remain favorable compared
with IPG SCS because, with Wireless SCS, the expense of the
screening trial is absorbed in that of chronic treatment.
An additional long-term cost advantage of using the Wireless SCS

system accrues because its transmitter is external, making replace-
ment an easy matter without the cost and potential morbidity asso-
ciated with the surgical procedure needed to replace an IPG. When
SCS was introduced in the 1960s, externally powered “radio-
frequency” (RF) systems, which had this advantage, were the only
systems available. Despite the eventual development of implanted
generaters powered by primary cell batteries, some clinicians contin-
ued to use RF systems as long as they remained available (until the
advent of rechargeable IPGs) (21). Whereas IPGs with rechargeable
batteries are considered more cost-effective than devices powered
by primary cell batteries, rechargeable batteries also lose capacity as
they age and need to be replaced. Indeed, some manufacturers
have deliberately limited the lifespan of rechargeable IPGs (13).
Wireless SCS technology, thus, changes the economic model

that has driven clinical practice by offering substantial long-term
cost savings.

Strengths and Limitations of Our Model and Its Inputs
In the absence of data from a head-to-head comparative study

of Wireless SCS and IPG SCS, we derived the clinical data on Wire-
less SCS from the high-frequency arm of an RCT (6) in which
patients with a Wireless SCS system were assigned to high- or

low-frequency stimulation, with no opportunity to cross over and
receive the other waveform. If the clinical study had allowed
crossover, as would be expected in practice, the overall clinical
study results, as well as the results in the high frequency arm,
might have been more favorable.
For the sake of consistency and comparability, we used strate-

gies (assumptions and model inputs, including the discount rate,
death rate, utility values assigned to health states, and the proba-
bility of transitioning from one health state to another) from pre-
viously published SCS cost modeling studies (7–9). Thus, we
inherited any associated limitations, errors, and biases, including a
zero probability of transitioning from optimal to suboptimal pain
relief with SCS during the Markov period (Table 2). This value,
which has been incorporated in models since 2009 (7), means
that SCS patients can transition only from optimal SCS to no pain
relief (and thence on to CMM) or to death. As is customary,
although its probability is zero, our Markov model schematic nev-
ertheless shows the pathway that an SCS subject should be able
to travel from optimal to suboptimal pain relief (Fig. 2).
As was the case in all of these studies, for example, our model

falls well short of representing clinical experience by failing to
permit the possibility of recovering from a complication
(in contrast, see van der Wilt et al. (22) for an example of a cost
modeling study in sacral neuromodulation that takes such recov-
ery into account and the cost-utility analysis of sacral anterior root
stimulation by Morlière et al. (23) that integrates “reversible
conditions,” such as device failure, into its “irreversible states.”)
Annemans et al. (9) describe the utility scores we adopted for

this study, which were first published in 2009 (10) and which they
(9) and Taylor et al. (8) used in their studies, as “conservative”
because in 2009 SCS equipment did not permit high-frequency
stimulation, which Annemans et al. believe has improved the
effectiveness of SCS in treating low back pain.
Finally, we have made additional conservative assumptions and

decisions that both strengthen and limit our model: we did not
include the cost of system removal, even though that would be
higher for IPG SCS; we perpetuate the wildly conservative assump-
tion we inherited from previous models (7,9) that CMM results in
zero complications with zero associated costs; and we assume that
base-case device costs for permanent implantation are the same for
Wireless SCS and IPG SCS, that complications occur with the same
frequency and severity with either technology (despite the fact that
the clinical study of Wireless SCS reported an infection rate of only
1% (6)), that device removals occur at the same rate (even though
the bulk of an IPG might be a common reason for removal), that
the replacement interval for the Wireless transmitter and the IPG
are the same, and that a reasonable MWTP threshold is $50,000 per
QALY (even though an MWTP threshold of greater than $100,000 is
now accepted (15,16)).

Future Studies
Our model takes the payer perspective; thus, patient and socie-

tal perspectives, using actual costs instead of Medicare reimburse-
ment rates, remain to be explored.
We chose to model the typical U.S. practice for IPG-SCS of using

two temporary trial electrodes; two alternative protocols remain
to be considered:

1. Placing electrodes for a trial in such a way that they can
remain in situ for chronic use with an IPG, thus reducing the
cost of the definitive implanted system. This is necessary in
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any case requiring open surgical electrode placement
(by laminotomy or laminectomy) and is common practice out-
side of the United States even with percutaneous electrodes.
Failed trials under this protocol, of course, incur the additional
expense of returning to the operating room to remove the
anchors and electrodes, but if trial failures and infections (the
risk of which increases with this approach) are infrequent,
these costs can be more than offset by the savings in success-
ful cases.

2. Comparing implantation of an entire IPG-SCS system in a single
stage (“direct-to-permanent”) with implantation of Wireless SCS.

In addition, future studies should allow health economists to update
SCS model inputs and assumptions, including new utility scores based
on updated quality of life data and improved transition probabilities
and pathways that better reflect real-life clinical experience.

CONCLUSIONS

Our economic model shows that from the payer perspective,
single-stage “direct-to-permanent” Wireless SCS implantation
achieves “dominance,” that is, superior results at the same or
lower cost, vs. the current U.S. practice of conducting a screening
trial with temporary electrodes, followed in successful cases by
implantation of new electrodes and an IPG in a second stage.
Wireless SCS remains more cost-effective than IPG SCS over clini-
cally relevant ranges of key variables.
The results of our modeling study can be reproduced to test

their accuracy, and we have presented our findings in a way that
should be of practical use to decision-makers.
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