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6. Abstract 
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1 . -  MATHEMATICAL DEVELOPMENT OF HISS 

1 . 0  Introduction 

NASA is act ive i n  research on supersonic combustion [l-31. O f  
par t icu lar   in te res t   a re  methods for   inject ing hydrogen i n  a  supersonic 
a i r  stream i n  a manner which achieves  effective mixing and a min imum 
pressure loss. Two arrangements o f  i n t e re s t   a r e  shown i n  Figures 
(1 .O-1) and (1 .O-2). 

This report  provides documentation of a f i  n i  te-difference compvter 
program cal led HISS (Bdrogen  Injection of a - Supersonic -_ Stream) which 
was developed by FMTS under contract  t o  NASA f o r  the  exclusive  use of 

NASA; i t  can be used t o  predict  the  flow  properti,es  for  cases  depicted 
i n  Figures  (1.0-1) and (1.0-2). 

[4 I Hydrogen jets \ 

Figure 1.0;- I Normal Injection 



F i g u r e   I .  0 - 2 Para l le l  Injection 

The remaining par t  of this chapter gives the mathematical equations 
which are used t o  model the flow  process. The ''art''  involved i n  u s i n g  
these  equations t o  develop a finite-difference  algorithm  for  these 
equations is   a lso  descr ibed.  

1.1 Capabili t ies and l imitations of HISS 

HISS i s  capable  of  calculating  three-dimensional, boundary layer 
flows which are   e i ther   external  or internal .  The geometry considered 
is  flow i n  a fixed  rectangular  parallelepiped w i t h  "zero-flux" boundary 
conditions on each s ide  wal l ,   e i ther  a f ree ,  sytnnetry or sol id  wall a t  
the  top  surface and e i t h e r  a symmetry or wall boundary condition  at   the 
bottom surface. I t  can handle inject ion o f  hydrogen ranging from 
normal t o  paral le l  t o  the main a i r  stream. Five equilibrium  reactions 
are allowed. The  main a i r  flow  can be either  subsonic  or  supersonic;  
however, the  free  stream  pressure  gradient i s  considered  to be zero, 

The flow is  considered  turbulent and the yiscosi ty  is calculated 
by  way o f  the "k -E I l  turbulence model described i n  14J. Density i s  
calculated  via  the  ideal gas law. 

1 . 2  Numerical method 
The numerical method used  i.s described i n  de ta i l  i n  151. A brief 

discussion  will be  made t o  sumnarize  the  method. 
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1.2-1 The different ia l   equat ion 

The general  differential  equation describing the transport  of a 
fluid  property 0 i s  expressed i n  Cartesian  coordinates  as  follows  for 
the fixed volume under consideration: 

(1.2-1) 

where x ,  y ,  and z are  Cartesian  coordinates  as  i l lustrated i n  Figure (1.2-1): 
@ i s  a general  dependent  yariable. 

The governing  equations which must be solved  are:  continuity , 
momentum equations  for each coordinate  direction, the energy equation, 
an equation  expressing  conservation  of  total hydrogen and two d i f fe ren t ia l  
equations  for  turbulence  properties. These equations a1  low calculations 
of eight dependent variables,  namely u, v ,  w ,  p ,  f ,  fi, k and E .  All  of 
these equations except  contlnulty haye t h e  f o rm o f  equation (J -2-11 and 

the  respectiye Source  terms and t ransport   coeff ic ients   are  given i n  
Table  (1.2-1). The calculation of pressure  is  described i n  Section  1.5. 

Y c z 

X 
Flow 

Figure I .  2- I Coordinate Systems 
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For these  variables,   the  appropriate  transport  and source terms 
are  given i n  Table (1.2-1). 

r 
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See Section 1 . 7  
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Values for  the  laminar  Prandtl number, IS, and the  turbulent  Prandtl 
number IS along w i t h  C1 and C2 required i n  the source term of the k and 
E equations  are  given i n  Table  (1.2-2). Also given are  

t,dJ 

E3zE€El .42 9.0 .09 1.44  1.92 

Table (1.2-2) 

K and E which are  constants  required  in  the  law-of-the-wall  formulation 
described i n  section 1.6-4 and the  constant CD used t o  obtain  the 
dissipation  length  scale i n  equation  1.3-2. 

1 .3  Auxiliary informat* 

In addi t ion  to   the  par t ia l  d i  f fe ren t i  a1 equations  the complete 
specif icat ion of the problem requires  provision  of  auxiliary  information 
of three types: boundary conditions,  physical  hypotheses which permit 
the  calculation of diffusion  coeff ic ients   as  well  as  sources and sinks 
of each variable,  and certain  relationships among the thermodynamic 
and transport   properties  required  to  describe  the flow. 

1.3- 1 Boundary condi ti ons 

For each  of  the seven variables  1i.sted i n  Tab.le  (1.2-11, yalues 
must be specified i n  the z = 0 plane. In addition, boundary conditions 
along  the N and S surface  xsee Pi:gure (1.2-.1)] must b e  specified  for each 
of these  variables.  These  boundary condl'ti o n s  can. be speci.fi:ed 
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as  the  value  of the variable + or the f lux of + through the surface.  A 
detailed  discussion of boundary conditions i s  given i n  Section 1.6. 

1.3-2  Physical  hypotheses 

The gas density is  calculated by the  ideal gas  law. Details  are 
given i n  Section  1.7  since  special  procedures  are  required t o  t r e a t  mixed 
subsoni  c-supersoni c flow. 

The laminar  viscosity  is  calculated by the  formulas  presented on 
page 58 of reference 167 and will  not be repeated here. 

The turbulent  viscosity i s  calculated by solving  conservation equa- 
t ions   for   the   k ine t ic  energy o f  turbulent   f luctuat ing motion, k, and the 
energy diss ipat ion  ra te ,  E. The turbulent  viscosity i s  then  given by: 

(1.3-1) 

where k i s  a dissipation  length  scale which can be determined from the 
equation  for E, i . e . :  

CD k 3 / 2  
I =  

E 
(1.3-2) 

Equations (1 .3-1)  and (1.3-2)  are the basis by which the ef fec t ive  t u r b u -  
l en t   v i scos i ty   i s   ca lcu la ted  by the k - E  model. 

1.3-3 Thermodynamic  and transport   relationships 

In order t o  calculate  properties such as  laminar  viscosity  or 
temperature, i t  i s  necessary  to know the mass f rac t ion  o f  each  chemical 
specie   present   a t  a given  location. Thermodynamic equilibrium i s  assumed 

SO t h a t  from the local  temperature,  pressure, and  element  fTactfons: the 
specie mass f ract ion d i s t r i b u t i o n  i s  calculated.  This technique was 
developed i n  this work  and i s  reported i n  de ta i l  i n  Appendix A. 
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Another important relationship is between the  stagnation  enthalpy 
and temperature. This relationship is: 

where Cp i s   t h e  mixture  specific  heat and Tref is the  reference tempera- 
t u re   fo r  which the  specie  enthalpy of formation, h:, i s  based. For th i s  
work Tref = OOK. Note t h a t  C i s  defined by: 

P 
T 

CdT="-  h-href 
P T-Tref 

where h is  the  sensible  enthalpy a t  the  temperature T. Therefore,  the 
definition  takes  into  account  the  variation of specific  heat w i t h  tempera- 
ture .  

The dens i ty   i s  assumed t o  vary according t o  the  ideal gas  law, 
namely : 

1.4 The d iscre t iza t ion  procedure 

The finite-difference  equivalents of the  differential   equations  are 
obtained by integrating  the  lat ter  over  the  control volumes  which surround 
the nodes  of a grid  system. For purposes of this  integration,  the de- 
pendent  variables  are presumed t o  vary  in  a  prescribed manner between g r i d  
nodes; de t a i l s  of this   are   avai lable   in  Patankar and Spalding [5]. 

1.4-1 The gr id  system 

The g r i d  system used is  indicated i n  Figure (1.4-1). I t  consists o f  
a  system o f  orthogonal  intersecting  grid  lines i n  the x-y plane  corre- 
sponding t o  a  constant  value  of z. 

7 



Y 

t 
Variable 

Figure I . 4  - I Grid System 

1.4-2 Storage  locations 

Figure (1.4-1) a lso  indicates  the f a c t   t h a t  the u and v veloci ty  
components are   located  a t   points  i n  the g r i d  regularly  displaced from 
the  points where al l   o ther   var iables   are   s tored.  The boomerang-shaped 
envelopes  enclose  the  triads  of po in t s  denoted by the s i n g l e   l e t t e r  N, S ,  
E, W o r  P, and represent a unique  computer storage  location. 

1.4-3 Control volumes - 
The control volume surrounding each g r i d  node P,  i s  indicated by 

dashed l ines  i n  Figure (1.4-2), and i s  termed the main control volume. 
Control volumes appropriate t o  the u and v velocity components are  "stag- 

8 
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, Upstream 
' Station 

Figure 1.4-2 Main Control Volume 

gered" from such main control volumes; the  faces  of  the former  being 
arranged t o  pass  through g r i d  nodes where pressures  are  stored. 

The control volumes corresponding  to the near-boundary ve loc i t ies ,  
v i n  the  case  of N and S boundaries and u i n  the  case o f  E and W bounda- 
r ies ,   a re   a r ranged   to  be somewhat larger  than their size i n  the rest of 
the calculation domain. Figure (1.4-3) i l l u s t r a t e s   t h i s  p o i n t .  The 
near-boundary main control volumes remain unchanged. 



U - Control Volumes 

Figure I .4 - 3 Near Boundary Velocity Control  Volume 

1.4-4 The general  discretized  equation 

The general  discretized  equation  is  obtained by integrating 
equation (1.2-1) over  the  control volume surrounding each g r i d  node. 
Such  an integration i s  performed a f t e r  making assumptions  about  the 
manner i n  which the variable $ i s  dis t r ibuted between g r i d  nodes.  All 
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dependent  variables  are presumed so t o  vary, 1 inearly i n  the x and 
y directions and i n  castellated  fashion  along  the z direction. The 
r e su l t  of the above-mentioned operation i s  an algebraic  equation for 
each g r i d  location.  This  algebraic  equation now represents  the  dis- 
cretized form of the  balance  equation  for +, over  the  control volume 
surrounding  the g r i d  location. The balance  equation i s  expressed 
simply  as: 

(1.4-1) 

where the  L's  represent  convective  contributions,  T's  the  diffusive 
and S the  source (and/or  sink)  contribution t o  the  balance o f  +. The 
location o f  points e ,  w ,  n ,  s ,  E ,  W ,  N ,  S i s  given  in  Figure 1.4-2. 
These coefficients  are  defined as follows: 

(1.4-2) 
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6xe = xp - X E  6XW = xw - xp ( h )  

where the  subscripts e ,  w ,  n ,  s ,  E ,  W ,  N ,  S indicate  location  defined 

i n  Figure  1.4-2 , A Z  i s   the  forward s tep  s ize  and S' i s  always expressed 

i n  l inearized form as:  

s; = S " +  s ' P P  (1.4-3) 

On re-arranging  the terms o f  equation (1.4-1)  , we have: 

where the  coefficients A; are  defined  as  follows: 



AS ' = ( T: + L z  ) / A i  ( d l  (1.4-5) 

Ab = T i  + T: + T: + T t  - L: + L: - Le + Lw + Fu - sp ( f )  x x  

I t  is  possible   for  the r a t i o  of  convective  contribution L i  t o  
I 

the   coeff ic ient  AM to  become large on occasions  resulting i n  the 
coeff ic ient  becoming negative. Were equation  (1.4-4) t o  be solved 
w i t h  negative  coefficients,  physically  implausible  results would ensue. 
TO overcome such a poss ib i l i ty ,  a hybrid scheme, well-known as  the 
high-lateral-flux-modification (see Reference r51) i s  introduced. This 
scheme consis ts  o f  replacing  all   the  coefficients of the form T i  by 
7: as  follows: 

(1.4-6) 

where, I L I  signif ies   the modulus of L. 

1.5 The computational  algorithm 

The computational  algorithm embodied i n  HISS, i s  the SIMPLE 
(for  Semi-mplici  t Method for  pessure-Linked  Jquations) scheme reported 
i n  reference [SI. In br ief  , this scheme i s  described  as  follows. 

* 

Approximate  forms  of discretized momentum equat ions   a re   f i r s t  
solved w i t h  a guessed-at  pressure-field. The resulting "starred"  velocity 
f i e l d  i s  used i n  conjunction w i t h  the discretized  continuity  equation  to 
a r r i v e   a t  a d i s t r ibu t ion  of "pressure-corrections," p ' .  These pressure- 
corrections  are then used i n  correcting  the  pressure and ve loc i ty   f ie lds  
simultaneously. The corrected  velocity  f ields  are  subsequently used i n  
solving the discret ized forms of a l l   o ther   equat ions.  

* Reference [5) describes an incompressible  solution. The 
algorithm used i n  HISS has been modified t o  handle  compressible  13 
flow  as described i n  Section  1.7. 



S o l u t i o n s  t o  the algebraic  equations  themselves  are  obtained by the 
use of  standard  tri-diagonal  matrix a1 gori thm (ITDMA]. 

1.6 Boundary conditions 

1.6-1  General policy 

The HISS program requires  the  specification of Ejoondary conditions 
on the N and S boundaries. The boundaries on each side are  fixed  as 
"zero  flux"  boundaries. A clear   dis t inct ion i s  made, f o r   a l l  dependent 
variables,  between boundary values and values  internal  to  the domain. 
The main machinery  of the program leaves  the boundary. yalues. unchanged, 
although i t  uses them i n  determining  the  internal  values. Thus, the 
procedure is  so structured  that  i t  nominally  solves  the fixed-boundary- 
value problem. When boundary yalues  are n o t  known,  however, appropri.ate 
modifications  are  devised which permit  the  single  structure t o  be used. 
The following  sections  describe such modi'fications. 

In general, boundary condition  information can be supplied t o  the 
numerical calculation procedure i n  one of  four ways. The boundary values 
o f  the dependent  variables  themselves  can be modified; or the  values  of r 
a t  the boundary nodes can be suitably  adjusted.  Alternatively,  the  source 
terms f o r  the near-boundary control volumes or   the  f i n i  te-difference 
coeff ic ients  themselves can be suitably  modified. HISS i s  equipped w i t h  
source-term  modification  practices. 

1.6-2 Boundary condi t i  ons for transport  equations 

Fixed Boundary Val ues 

This i s  the  simplest  case and the  user i s  merely required to  supply 
the correct  boundary values a t   the   s tar t   of   the   calculat ion  procedure;   or  
e l se ,   i f   t he   ' f i xed '  boundary conditions  vary i n  any arb i t ra r i ly   spec i f ied  
manner along  the z direct ion,  account  can be taken o f  such variations by 
suitably  updating  the boundary value  of  the  appropriate  variable. 

Fixed gradients  at  boundaries 

When the boundary value  of a dependent variable i s  unknown b u t  the 
normal gradient  or  the  f lux of the var iable   a t   the  boundary i s  given , 
the  following  practice i s  adopted. The coeff ic ient  of the f ini te-difference 
equations  connecting  the boundary node t o  an internal node i s  arranged  to 



be zero. The boundary f l u x  is  then supplied  through the source  term 
f o r  the internal  node. A common example of this i s  i n  the treatment  of 
planes  of symmetry. The only  action  taken here is  t o  set the appro- 
p r i a t e  f in i  te-difference  coefficient  to  zero.  

Retrieval ~~ ~ of unknown boundary values 

In s i tua t ions  where boundary values  of dependent variables  are 
unknown and the boundary coeff ic ient  has been set to  zero,  the value 
of the dependent variable i n  the computer register  corresponding  to the 
boundary node has no significance- (The wall cond? t ion i s  then  represented 
by the  value a t   t h e  node nearest the wall-]. In t h i s  programno action is  
taken  to modify it SO t h a t  the in'i 'tial  value of the dependent variable  will 
continue t o  prevai 1 i n  such regis ters .  
1.6-3 Boundary " conditions ~ for  the  pressure-correction  equation 

Unlike the f i  n i  te-di  fference  equations  for a general  variable 4, 
the  pressure  correction  equation  is programmed w i t h  the presumption t h a t  
a l l   gradients   of  p '  normal to  boundaries  are  zero  at  the  boundaries 
themselves. The pressure-difference  coefficients D U ,  Dv and DW a re  
in i t ia l ized   to   zero   over  the entire calculation domain and remain a t  
this value  for  the boundary nodes. 

1.6-4 Wall functions 

The expressions  for r appropriate  to  turbulent flow are  n o t  s t r i c t l y  
valid i n  the   vicini ty  of wall  boundaries t o  the  flow, where laminar  vis- 
cosity  plays an important  role.  If  the near-boundary grid nodes are  suf- 
f i c i e n t l y   f a r  away from walls,   the  turbulent  viscosity can continue  to be 
used for   in te rna l  g r i d  nodes. However,  means must be provided for  the 
calculation of the correct  shear stresses a s  well as  f luxes of  other 
dependent var iab les   a t   the  wall  boundaries.  Provisions  for such calcu- 
la t ions   a re  made i n  the program, and use the so-called  wall-function 
concept. In this concept, the flux o f  a variable + a t  a wall  boundary, 
i s  expressed  as: 

(1.6-1) 
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where 6wal denotes  the normal distance from the wall t o  the near-wall 
point. Values o f  r$,wal are  obtained from the  presumption  that i n  
the  region  adjacent t o  wall  boundaries,  the  dependent  variables  obey, 
for  turbulent flow,  a  modified form of  the  semi-logarithmic  law-of- 
the-wall . The formulae used t o  calculate  r$ ,wal a re  provided i n  
Table (1.6-1).  

Velocity components 
normal t o  the wall 0 

Veloci ty  components 
parallel  t o  the wall 

E ” 

Table (1.6-1) 
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The def ini t ion of y+ i n  the tab le ,  i s  a generalization due to  
Spalding [51 of the conventional  form, i n  t h a t  : 

pCDL k' 6 
y+ = 

u 
(1.6-2) 

where 6 denotes the distance from the wa l l ,   a t  a location w i t h  which 
the  values  of p and k are  associated. The constants K and E i n  Table 
1.2-2 are  obtained from the conventional form of the  law-of-the-wall: 

U 
+ (1.6-3) 

and are  given  values  of 0.42 and 9.0 respectively. 
The boundary conditions  for k and E a re  provided as  follows : 

the  diffusion of kinet ic  energy k ,  t o  the wall i s  known t o  be negl i g i  ble 
and i s  se t   to   zero  and a balance  equation  for k ,  regular i n  other  respects 
is  solved  for  control volumes adjacent  to wall  boundaries. The diffusion 
of   diss ipat ion  ra te  E t o  such boundaries i s  more d i f f i c u l t  t o  express. 
Instead of attempting t o  calculate  rE,wal, , use i s  made of the knowledge 
that  the length  scale 1 varies  l inearly w i t h  distance from the wall, i n  
the neighborhood of  the  wall. The dissipation  rate  is   then  calculated 
from this  length  scale from: 

k 3 / 2  
E near  wall = cD3'4 - K6 

(1.6-4) 

The practice  adopted i s  to   f i x  wal t o  the above value,  without 
d i s t u r b i n g  the general  calculation  procedure, i n  the  following manner: 

(1.6-5) 

where L is a large number, say 1030. 
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The expression  for r for  a  general  dependent  variable 4 ,  
i s  based on the  expression  indicated  in  Table (1.6-l) ,  the  value o f  
P being  calculated from: 

4 ,wall 

4 

(1.6-6) 

where u and u denote  the laminar and tubulent  values o f  

Prandtl/Schmidt number appropriate t o  the  transport of 9.  
9 t 3 4  
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1.7 The " ~ treatment - - of compressibility 

The special  compressibleflow  features  of the computational 
procedure i n  HISS are  as  follows: 

1.7-1 The calculation and use of density 

Two d is t inc t   dens i t ies   a re  computed  and used a t  each step.  The 
downstream density (p,)  i s  used only i n  computing the mass f lux i n  the z- 
d i rec t ion   a t   t he  downstream face  of the ce l l ;   t he  upstream density 

) i s  used for   calculat ing  la teral  mass fluxes,  and the upstream (PP,U 
axial mass flux. The two densities  are  calculated  as  follows: 

PP ,u P.,UU 
p P , U  = R T p Y U U  

(1.7-1) 

(1.7-2) 

where W p  is  the  local  mixture  molecular  weight, R is   the   universal  gas 
constant, and subscript  'UU' refers  t o  the  plane two steps upstream 
of  the  plane i n  question. 

1 .7 -2  The  momentum ~ ~~ equation  in  the  z-direction 

The source term employed i n  the w equation depends 

on whether the  local flow i s  subsonic or supersonic. When the flow 
i s  subsonic i t  i s  necessary , in order t o  render  the  equations par<- 
bolic,  to  write  the  source term as a mean pressure  gradient,   i .e.  , 

* 

" 

(1.7-3) 

where denotes  the mean pressure which i s  determined for a confined 
flow from the  requirements  of  overall  continuity,  as  described i n  
reference [5]; f o r  an unconfined  flow, p is  simply the  free-stream  pressure. 

- 

* The need f o r  this practice i s  discussed i n  reference 151. 
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For supersonic  flow, i n  contrast ,  i t  is  possible,  without  destroying 
the parabolic  nature o f  the equations , t o  employ the local pressure to  
calculate  the pressure gradient,  i .e. ,  

This pract ice ,  i t  
pressure waves i n  

should be observed , 
supersonic  flow. 

(1 .7-4) 

allows  full  account t o  be taken  of 

1.7-3 The pressure-correction  equation 

given i n  reference [5]* must, i n  order t o  handle  compressible  flow, be 
modified as described below. 

The incompressible-flow form of the  pressure-correction  equation 

Account must now be taken of t he   e f f ec t  of a pressure change a t  P 
on the mass f lux   a t   t he  downstream face  of  the  cell .  For supersonic  flow 
the  mass-flux change (0.); i s  related t o  the  pressure  correction p;' by: 

(1.7-5) 

where, pp* and w p *  are computed  from the guessed pressure pp*, ( d p / d p ) p  i s ,  
from equation (1 .7 -1 )  : 

WP , u  [%Ip = q - j  , 

and 

w w P '  
DP = p 6  

and i s  deduced from the  f ini te-difference 
i n  the manner described  in  reference [SI. 

(1.7-6) 

(1.7-7) 

form of the momentum equations, 

* Note that  in  reference [5] the forward-marching d i rec t ion   i s   the  x 
direct ion,  whereas i n  HISS i t  is the z direct ion.  
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I- - - 

For subsonic  flow,  equation  (1.7-5) must be modified t o  account for  
t he   f ac t   t ha t  wp no longer depends on pp; the  modified  expression i s :  

(1.7-8) 

The  resulting  equation  for p '  i s  of  the form g iven  i n  reference [5] 
with the coeff ic ients  modified t o  account for  the  above-described 
influences  of pp l  on ( p w )  

P '  
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2. GENERAL FEATURES OF HISS 

2.0 Introduction 

In this chapter an overview of HISS i s  g iven  w i t h  a description 
of the program flow and control , and definitions  of  important  variables. 

2 . 1  General s t ructure  

The general  structure o f  the HISS computer  program i s  shown i n  
Figure (2.1-1).  The divided,  vertical  box  on t h e   l e f t  i s  the main pro- 
gram, HISS, which has the chief  function o f  control l ing  the  cal l ing 
sequence  of the subprograms. The s t a r t i n g  p o i n t  fo r  HISS i s  a t   t h e   t o p  
of t h i s  box. Points where ca l l  of  subprograms are  made i n  HISS are  
denoted by horizontal 1 i nes. Arrows indicate  the "flow"  of  the computer 
program t o  and  from the subprograms which a re  shown i n  boxes. The major 
calculations and logical  decisions made  by HISS are  indicated i n  the 
spaces between the horizontal  lines marking cal l ing  points  i n  HISS. 

The subprograms are  contained i n  subroutines which are  not i n d i -  
vidually  called. These subroutines can be c lass i f ied  i n  three  categories:  
problem dependent , physi cal  property dependent and invari  ant. BLOCK DATA 
and ALLMOD are  the problem dependent subroutines  while AUX i s  for  physical 
property  specification. SOLVE, STRIDA,  STRIDB and PRINT are  the  invariant 
portions  of  the program. 

The remaining par t  of this chapter  gives a general  overview of the 
computer program while  the  next  chapter  details  the  operation of each 
subroutine. 

2.2 Fortran  equivalents  of main variables 
A few of the FORTRAN names used i n  HISS which will be required i n  

the  following  sections,  are  introduced  here. The dependent variables 9 

are  stored i n  an array F, which i t  i s  convenient t o  consider  as a three- 
dimensional array F ( I  ,J,NV). Here I and J denote  the  location  (respec- 
t ive ly  along  the x and y direct ions)  and N V  ident i f ies  a par t icular  
variable. The three  velocity components and the  pressure-correction  are 
included i n  the F array; however, for   ease i n  understanding,  separate 
arrays U , V , W  and PP are  also used and  made equivalent  to  parts o f  F as 
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""- 
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ALCULATE 
VERALL 
ALANCES 

""_. 
1 STEP 

NPJUMP? 
- - 

""" 

I S T E P  = 
I I N J  OR 
I I N J + l .  
MODIFY  DZ 
& NSWP 
1 STEP>LASTt 

lSTEP=O? 
ITERATE K, 
u,v,w 

"A"- 

""" 

""" 

zu> 
ZLAST 

BEGIN  SPECIE 

D UPSTRM 

I GAMMA  GAM0 D 

SOURCE 

STOP H I S S  
SOMOD I 

YES c 

SOLVE 

STRID3  CALLS  STRIDZ ONCE THEN  OTHER 
SUBPROGRAMS CALLED BY STRID4  ABOVE ONCE 
FOR EACH VARIABLE  SOLVED. NOTE STRID3 
CALLS  STRIDl  AFTER SOLVE FOR W VELOCITY 
ONLY. 

SAME AS STRID4 ABOVE. 

YES - STOP H I S S  

F i g u r e  2.1-1. G e n e r a l   S t r u c t u r e  o f  H I S S   C o m p u t e r   P r o g r a m  
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f o l l  ows : 

U(1,J) E FCI,J,NYU) 

V(I , J )  = F(.I,J,NYV) 
W ( I , J )  F(.I ,J,NYW) 

PP(I , J )  = F(I  ,J ,NPP) 

c2.2-1) 

.The ident i f ie rs  N V U ,  N V V ,  NVW and NPP,  also used to   ident i fy  U , V , W  and 
PP elsewhere i n  the program, are  assigned  values  2,3,4 and 1. The la rges t  
values  of I ,J and N V  fo r  which storage i s  provided i n  the program are 
denoted by IMAX, JMAX and N N V  respectively and assigned  values 1 2 ,  34  and 
9. 

A1 t h o u g h  two- and three-dimensional  arrays have been mentioned above, 
the computer program formal ly  uses one-dimensi onal arrays , whose subscripts 
are  calculated,  each  time  they are  required. T h u s ,  F(I,J,NV) i s  referred 
t o  as F(IJNV),  where: 

IJNV = I + JM(J) + N F M ( N V )  (2 .2-2)  

the  arrays JM and NFM being  calculated  once-and-for-all from: 

JM(J) = (J  - 1) * IMAX 

N F M ( N V )  = ( N V  - 1) * IMAX * JMAX 
(2.2-3) 

Also W(1,J) i s  referred t o  as W(1J) where: 

IJ = I + JM(J)  (2.2-4) 

The four  neighboring  points  of  the  location  IJ , corresponding t o  the 
points  of  the compass are  referred t o  as IJN, IJS, I JF  and  IJK. These 
are  calculated  as : 
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IJN = I J  + IMAX 
IJS = I J  - IMAX 

IJE = I J  + 1 
IJW = I J  - 1 

.It i s  easy t o  see t h a t   p o i n t s   f u r t h e r  removed become: 

IJNE = I J N  + 1 

I J X  = IJS - 1 etc .  
- 

(2.2-5) 

(2.2-6) 

For a given  problem, a l l  members o f   t h e  F a r r a y   f o r   w h i c h   p r o v i s i o n   i s  
avai   lab1 e, may n o t  be r e q u i r e d   t o  be solved  for .   Furthermoke , some o f  
these  var iab les  may be obta ined  f rom  a lgebra ic   equat ions and no t   f rom 
t h e   s o l u t i o n s   t o   t h e   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n .  To p r o v i d e   f o r  
these a1 t e r n a t i v e s  , use i s  made o f  an a r r a y  ISOLVE(NV). For  ISOLVE(NV) 
equal t o  z e r o ,   t h e   d i f f e r e n t i a l   e q u a t i o n   i s   n o t   s o l v e d ;   s o l u t i o n   i s  
o b t a i n e d   f o r   v a l u e s   o f  ISOLVE(NV) greater   than  zero.  It i s   l e f t   t o   t h e  
user, t o  make f u r t h e r  use o f   t h i s   f a c i l i t y .  

O t h e r   a r r a y s   d i r e c t l y   r e l a t e d   t o  members o f  the  F a r ray   a re :  
IPRINT(NV),  FU(IJ,NV),  TITLE(K,NV), FLUXN(I,NV), FLUXS(1,NV). Values 
o f   F (  I J  ,NV) a r e   p r i n t e d   o u t  i f  IPRINT(NV) i s  equal t o  1; otherwise , a 
p r i n t o u t   i s   n o t   o b t a i n e d .  FU(IJ,NV) s to res   the   ups t ream  va lue   o f  

F ( I J , N V )   d u r i n g   t h e   i t e r a t i o n   c y c l e   a t  any g i v e n   i n t e g r a t i o n   s t a t i o n .  
FLUXN(I,NV), s t o r e s   t h e   f l u x e s  o f  t h e   v a r i a b l e  NV, on t h e   N o r t h  boundary 
and FLUXS( I ,NV) i s   f o r   t h e   S o u t h  boundary.  TITLE (K,NV) w i t h   t h e   i n t e g e r  
K t a k i n g  Val ues 1 t o  9 ,  s t o r e s  a 36 character  a lphanumeric t i t l e  o f  t h e  
corresponding  var iab le NV. T h i s   i s   u s e d   t o   i d e n t i f y   t h e   v a l u e s   o f   t h e  
v a r i a b l e s  i n  t h e   p r i n t - o u t .  

The q u a n t i t i e s  k, E, h, f, and T fo rm  the   rema in ing   va r iab les   o f   t he  
F fami ly .  They a r e   i d e n t i f i e d   b y   t h e   i n d i . c e s  NYK, MID, NYK, Nyp, and NyT 

r e s p e c t i v e l y  and  occupy NV l o c a t i o n s  5,6,7,8 and 9 i n  the  ar ray  F( IJ ,NV).  
No equat ion  i s  s o l v e d   f o r  T; however, it i s  convenient  t o  s t o r e  it a t   F ( I J ,  9 ) .  
Q u a n t i t i e s   p ,  p and r a r e   s t o r e d  as P( IJ ) ,  RHO(1J) and GAM(1J). They are  
n o t  members o f  t h e  F a r ray ,   bu t   a re   i nc luded   a long  wi th  F i n  a COMMON 
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statement, and immediately  following i t .  They can therefore be referred 
to  as  the ( N N V  + 1) ( N N V  + 2)th and ( N N V  + 3) th members of the F array,  
as  indeed they  are i n  subroutine PRINT. The integers NVP, NRO and NMU 
are used t o  ident i fy  them. 

A1 though, i n  general , the values  of r a re   d i f fe ren t   for  each  dependent 

variable,   storage provis ion for  only one s e t  of r ' s  i s  retained. 
Hence, a t  a given sta5e i n  the program, the GAM array  contains the 
values of r ,  appropriate t o  the dependent variable under consideration. 
Similarly,  provision i s  made for  the  retention  of one s e t  o f  coeffi-  
c ients  of the f ini   te-difference  equat ion  a t  a g iven  stage.  T h u s ,  A X P (  I J )  , 
AXM(1J) , AYP( I J )  , AYM(1J)  and AZ(1J) respectively  represent  the  coeffi- 
c ients  A b ,  /$, A h ,  Ai and Lu i n  equation  (1.4-5).  Similarly,  SU(1J) 
and SP(1J)  represent Su and Sp respectively i n  equation  (1.4-3). 
The quant i t ies   l ike  D p  i n  reference  151  are  stored  as DU(1J) , there 
being s imilar   arrays,  DV(1J)  and  DW(IJ), for  the corresponding  quantities 
associated w i t h  the v- and w- momentum equations. 

U 

KBCN and KBCS denote  the  type  of North and South boundary respec- 
t ively  as  follows: 1 indicates symmetry, 2 indicates  solid  wall ,  and 
3 indicates a f ree  boundary. 

2.3 Program control 

Program control ,   including  s tar t ,   in ternal  monitor ing and stop 
functions , i s  achieved th rough  program DAVE.  

Using the  information  supplied t h r o u g h  BLOCK DATA, t h e   f i r s t   p a r t  
of DAVE calculates and assembles all  the  information  about  the g r i d  system 
through c a l l s   t o  STRIDP and STRID1. Following t h i s ,  i n  the  same par t ,  a 
cal l  t o  BEGIN, supplies the in i t ia l   condi t ions   for   a l l  the dependent 
vari ab1 es . 

The second part  begins w i t h  the  statement: 60 CONTINUE. Following 
t h i s ,  mass sources,  step  length and the  location  of  the  station  for  the 
new calculation,  are  determined. This i s  followed by c a l l s  t o  SPECIE, 
DENSTY and UPSTRM. SPECIE calculates  the chemical specie  composition 
from element  compositions,  temperature and pressure. DENSTY i s  a member 
of the  physical  modelling subroutine AUX,  wherein the f luid  densi ty  p ,  

i s  calculated. UPSTRM stores  the upstream variables  required by the 

26 



computation i n  the array FU. After calculating the overall  balance of 
the major F 'arrays a ca l l  i s  made t o  VISCOS which calculates  r. I f  
ISTEP equals NPJUMP profiles  of  variables  specified by  IPRINT(.NV) = 1 
will be p r in t ed  out. Otherwise, only  overall  balance  information and 
s ta t ion  locat ion  wil l  be printed  out. 

The next section is  for  the calculation  of the velocity and pressure 
f ie lds .  First, a check i s  made t o   s e e   i f  injection occurs.   If   this 
tes t  i s  posit ive , a ca l l  i s  made to  INJMOD which provides the appro- 
p r i a t e  boundary conditions  through  source  terms. Next a check is  made 
t o  determi ne whether  the  station  for  calculation i s  immediately down- 
s t ream  of   in jec t ion .   I f   th i s   t es t   i s   pos i t ive  the number of sweeps on 
the pressure  correction  equation and the step length  are modified t o  
increase  accuracy and s t a b i l i t y  of  the program. The calculation i s  
stopped a t   t h i s   p o i n t   i f  ISTEP > LASTEP. Next a check i s  made to   deter-  
mine i f  ISTEP = 0 which i f   pos i t i ve ,   r e su l t s   i n   i t e r a t ion  on the 
hydrodynamic and turbulence  equation t o  improve the s ta r t ing   p rof i le .  

After   this   ser ies  of t e s t s ,  a ca l l  i s  made t o  STRID3 which yields  
the  velocity and pressure  f ie lds .  A c a l l  t o  STRID4 performs s imilar  
calculations  for a1 1 other  dependent  variables.  If ZU < ZLAST, control 
i s  returned t o  a p o i n t  i n  DAVE j u s t   a f t e r   t h e  CALL BEGIN statement 
and the  process  repeated  for  the  next  station. 

2 . 4  Detailed ~~ l i s t  of program variables 

All variables used i n  common statements  are  defined i n  Appendix B. 

Variables which appear  locally  are  defined by t h e i r  use in  the computer 
program and are n o t  defined  in ttli s report .  
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3. INVARIANT PORTIONS OF HISS 

3.0 I n t r o d u c t i o n  

Many o f   t h e   c a l c u l a t i o n s  do n o t  need  changing f o r   d i f f e r e n t  

boundary   cond i t i ons ,   e t c .   I n   t h i s   chap te r   t he   f unc t i on   o f   each   i n -  
v a r i a n t   p o r t i o n   o f  H ISS i s  g iven.   Again  impor tant   var iab les  are 

defined. 

3.1 C a l c u l a t i o n   o f   g r i d   q u a n t i t i e s  

The two s e t s   o f   g r i d   q u a n t i t i e s   s p e c i f i e d  by the   user  i n  BLOCK 

DATA are LCV, MCV and  ZETA(I), AGEOM. The former  represent   the number 

o f   $ - c o n t r o l  volume  faces i n   t h e  x and y d i r e c t i o n s  and t h e   l a t t e r   t h e  

n o n - d i m e n s i o n a l   c o o r d i n a t e   d i s t r i b u t i o n s   o f   t h e   $ - l o c a t i o n s   i n   t h e  x 

d i   r e c t i  on. 

Given  the above in fo rma t ion ,  STRID@, t h e   f i r s t  member subrout ine  

o f  STRIDA, computes t h e  maximum number o f   g r i d  nodes i n   t h e  I and J 

d i r e c t i o n s .   T h i s   i s  done i n   t h e   f o l l o w i n g  sequence: 

(3.1-1) 

It i s  emphasized  here t h a t   u s e r s  must  ensure t h a t   L P l  and MPl are  always 

l e s s   t h a n   o r   e q u a l   t o  I M A X  and JMAX respec t i ve l y .  The l a t t e r   r e p r e s e n t  

t h e  maximum dimensions o f  a1 1 v a r i a b l e s   i n   t h e   r e s p e c t i v e   d i r e c t i o n s  and 

are  g iven  va lues  accord ing ly  i n  BLOCK DATA. STRIDP) i s  conc luded  wi th   the 

s p e c i f i c a t i o n   o f   t h e   i n t e g e r   a r r a y s  JM and NFM i n  accordance  wi th  equat ion 
(2.2-3) .  

The second member o f  STRIDA i s  STRID1. S T R I D l  i s  c a l l e d  9 f rom 

HISS.  It i s  i n  S T R I D l  t ha t   t he   phys i ca l   coo rd ina tes  x and y are computed 

from  the  values o f  AGEOM and ZETA, as fo l l ows  : 
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X ( 1 )  = ZETA(1) * BXE (3.1-2) 
Y ( J )  = Y(J - 1) + AGEOM ** ( J  - 2 )  * DELY 

where DELY = BYN * (1.0 - A G E O M ) / ( l . O  - AGEOM ** M ) .  Here BXE and BYN 
represent  the  width and height of the  caqculation domain respectively; 
as  such,  they  are t o  be specified by the  user i n  BLOCK DATA. The above 
specification of Y(J) makes use of a geometric  series  for  specifying 
successive  intervals between Y(J) and Y (J - 1). Larger  values o f  AGEOM 
resul t   in   the g r i d  being "crowded" c loser  t o  the Y = 0 surface. 

Figure (3.1-1) now shows the  grid  in  plane  for a Cartesian  coordinate 
system and i 11 ustrates  the nomenclature  described  below. 

Fig.  (3.1-1) Grid showing numbering, main control volumes and FQRTRAN 
definit ion o f  grid  quanti  ties.  (Cartesian  coordinates) 
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The dashed l ines  i n  Figure  (3.1-1) j o i n  the  control-volume  faces normal 
t o  the x and y directions.  These are  the  control volumes for  fl 
dependent  variables  except  the U and V velocity components. The control- 
volume faces  pass mid-way between the g r i d  nodes except  near  the  boundaries 
where they  pass through the boundary grid  nodes.  Thus,  the  control- 
volume faces always  pass through points where the  velocity component 
normal t o  the  faces  are  stored. A normal velocity component a t  a control- 
volume face   i s  presumed t o  prevail  over t h a t  whole face. 

The control volumes f o r  each  of the  velocity components U and V are 
displaced  along  the  directions of these  velocit ies.  The control-volume 
faces normal t o  each of these  directions  pass th rough  g r i d  nodes on e i the r  
side of the  velocity component in  question.  Figure (3.1-2) i l l u s t r a t e s  
t h i s  p o i n t .  The geometric  quantities  associated w i t h  t h i s  g r i d  system are 
defined i n  Table 3.1-1. 

I- I I 1+1 

Figure 3.1-2 U- and V- Velocity  Control  Volumes 
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NO. 

1 

2 

3 

4 

5 

6 

7 

8 

~ 

GRID 
QUANTITY 

YDIF(J) 

TABLE 3.1-1 

. .  

MEANING 
~ . ~ ~ . - ~ 

Physical  coordinate i n  the x-direction. 

The difference between X (  I )  and X(1-I); 
used as the distances 6 i n  calculating 
x-direction d i f f u s i o n  f lux  of 9:  rbA+/6. 

The x-di rection w i d t h  of a main control 
vol me.  

The x-direction wid th  of a U-velocity 
control vol ume. 

Physical  coordinate i n  the  y-direction. 

The difference between Y(J) and Y(J-1); 
used as  the  distances 6 i n  calculating 
y-direction  diffusion  flux  of 0. 

The y-di  rection w i d t h  o f  a V-veloci ty  
control vol me. 

The y-di rec t i  on width o f  a V-veloci ty  
control vol ume. 
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Because the faces  of the main control volumes are s t ipu la ted   to  
pass midway between the grid nodes, in te rpola t ion   fac tors   for  the cal-  
culation of variables on these faces  are equal t o  0.5, except  near 
boundaries where they  are  ei ther 0 o r  1. For the control volumes 
appropriate t o  U -  and V- velocity components,  however, the interpolation 
factors  can d i f f e r  from 0.5, i f   the   spacing between g r i d  nodes i s  chosen 
t o  be non-uniform. For this  reason,  interpolation  factors  are  calculated 
i n  STRIDl and stored  as  FXP(I), FXM(I), FYP(J) and FYM(J). The sub- 
sc r ip t   re fe rs  t o  a g r i d  node. The value of U for  example a t  a g r i d  node 
(1 , J )  i s  given by: 

F X P ( 1 )  * U(I + 1,J) + FXM(1) * U(1,J)  (3.1-3) 

i t  i s  obvious from the above tha t  FXM(1) i s  simply 1 .0  - FXP(.I). 
Calculation o f  the  quantit ies  tabulated above completes  the  tasks 

performed by  STRIDI.  STRIDl i s  called once from DAVE t o  calculate  the 
i n i t i a l  g r i d  quant i t ies .  Also, STRIDl i s  called from STRID3, a f t e r   t he  
W- velocity  equation is  solved and corrected  for.  

3.2 Assembly of coeff ic ients  

STRID2 
The  STRID2 portion  of STRIDA i s  used t o  calculate  and s tore   the 

convective mass veloci t ies  ( i .e .  p u ,  p v  and  p w  i n  equation 1 .2 -1 ,  
crossing  the  control volume faces  along  the x and y directions).  
The arrays G X  and GY are  used,  respectively,   to  store these values. 

STRIDE i s   ca l l ed ,   fo r  each integration  plane, once a t   t h e  beginning 
of STRID3. Finally,  STRIDE i s  called from STRID4, a f t e r   t h e  U -  and V -  
veloci t ies  have been corrected. 

STRID3 
As referred t o  br ief ly  above, STRID3 and STRID4 are  the component 

subroutine of STRIDB which can be regarded  as  the main machinery of the 
HISS program. I t  i s  i n  STRID3, t h a t  the  f inite-difference  equations 
appropriate  to U , V , W  and p '  are  assembled, i n  that  order.  After  the 
appropriate  equations  are  assembled, a ca l l  i s  made t o  SOMOD (a  member 
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subroutine  of ALLMOD) t o  determine  whether any coefficients of the 
equations  require  modification. Once this  is   achieved, a ca l l  t o  
SOLVE permits  solutions of the  finite-difference  equations t o  be 
obtained. Once th i s   p repara t ion   i s  completed, the  coefficients of  the 
pressure-correction  equation  set  are assembled and the  equations  solved. 
STRID3 i s  then  concluded w i t h  a section  in which U's,  V's and p ' s   a re  
corrected. 

STRID4 
The assembly  of and solutions t o  the  f inite-difference  equations 

of a l l   o ther  dependent  variables  are performed in STRID4.  The primary 
reason for  keeping  the  functions of STRID3 and STRID4 a p a r t  i s  t o  permit 
i t e r a t ions  t o  be performed separately on each  of these  subprograms. The 
i t e r a t ions  themselves a re   i n i t i a t ed  by the  controlling subprogram MAIN. 
This i t e r a t i o n   i s  used in HISS t o  obtain  bet ter   d is t r ibut ion of K and E 

for   the   in i t ia l   s tep .  

3.3 S o l u t i o n  procedure  for  algebraic  finite-difference  equations 

SOLVE 
The function  of  the subprogram SOLYE i s  t o  arrange  for  the  solutions 
" 

t o  the  fini  te-difference  equations for  each dependent  variable NV , t o  be 
obtained. The solution  procedure used is  the  application of a pair  of Standard 
Tri-Diagonal Matrfx (TDMA) traverses,  one in each of the x and y directions.  

SOLVE has three major subdivisions. The f i r s t  ends  with the  state- 
ment: 18 CONTINUE. I t  i s   i n   t h i s  p a r t  t h a t  the  f inite-difference  coef- 
f ic ien ts   a re  assembled  in  readiness  for  the  subsequent  operations.  Fully- 
implicit   practices  are employed during  the  coefficient-assembly  process. 

The second p a r t  of SOLVE i s  concerned  with TDMA traverses  in  the x 
direction and ends w i t h  statement: 2 1  CONTINUE. 

The third and f inal  p a r t  of SOLVE s t a r t s  with this  statement and 
concerns  the TDMA traverses  in  the y direction. 

A ca l l  t o  SOLVE i s  made from STRID3 and STRID4, once for  each  dependent 
variable N V .  This  call  achieves TDMA traverses  in b o t h  the x and y direc- 
t ions;  however, which t raverse   i s  made f i r s t  depends upon the  value  of 
the  index IXY.  The f i rs t   t raverse   direct ion  wil l  be x i f  IXY = 1, and y 
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i f  IXY=2. IXY i s  se t   a l te rna te ly  t o  1   or  2 by the  statement: IXY=3-IXY 
which concludes both STRID3 and STRID4. The order of so]  ution for problems 
for  which HISS i s  applicable i s  n o t  important. 

Along each t raverse   direct ion , the  direction of sweep , i .e. 
whether from t h e   f i r s t  g r i d  node t o  the las t   or   vice   versa ,  depends 
upon the  value of an index, ISWP i n  the x direct ion and JSWP i n  the y 
direction. Each of  these  indices  takes on a  value 1 o r  2 by statements 
which follow  the end of  parts 2 and 3  of SOLVE. For example, the s ta te -  
ment following: 2 1  CONTINUE, reads: JSWP = 3 - JSWP. A value 1 implies 
that   the sweep direction i s  from f i r s t  t o  l a s t  g r i d  node  and 2 implies 
vice  versa. 

On occasion, i t  may be required  to perform more than one pair  o f  
TDMA traverses i n  a x-y plane,  for any given  dependent  variable. The 
number of pairs  of TDMA traverses i s  set by values  assigned  to an index 
array NSWP( N V ) .  The program i s   s e t  up w i t h  NSWP values equal t o  three 
except  for  the  pressure-correction  equation  for which NSWP(NPP) = 6. 

3.4 P r i n t o u t  of f ield  values of dependentya!iable> 

PRINT(ISKIP, JSKIP) 
I t   i s  frequently  required  to pr in t  out the contents  of the F array. 

This  task i s  performed by subroutine PRINT. 

PRINT(ISKIP, JSKIP) provides  for  the  printout  of F(  I,J,NV) where 
NV can a t ta in   a  maximum value of NFPMAX, which i s  s e t  as:  

NFPMAX = N N V  + 3 (3.4-1) 

The three extra  values  representing NVP , NRO and N M U ,  i .e. pressure, 
density and effect ive  viscosi ty   respect ively.  The decision  as  to whether 
a  particular  variable N V  i s   p r in tout  or n o t ,  depends upon whether the 
corresponding IPRINT(NV) i s  equal t o  unity  or n o t .  

The printout of  each  dependent variable N V  i s  given  a  heading  stored 
i n  TITLE(. . . , N V ) .  The formal  parameters ISKIP  and  JSKIP permit the 
select ive s k i p p i n g  of columns ( I )  and rows ( J ) ,  when i t  i s  not  required, 
for  any reason,  to p r i n t o u t  the complete array of  values  of  each  variable. 
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4. PHYSICAL  MODELLING 

4.0 I n t r o d u c t i o n  

T h i s   c h a p t e r   d e s c r i b e s   t h e   p o r t i o n   o f  H I S S  wh ich   ca lcu la tes   the  
p h y s i c a l   p r o p e r t i e s   r e q u i r e d  i n  the   so lu t ion   p rocedure .  

4.1 jI& 
The g e n e r a l   p o l i c y   i s   t o   c o n f i n e  a1 1 tasks   assoc ia ted   w i th  phy- 

s i c a l   m o d e l l i n g   t o  subprogram AUX. Thus, t h e   c a l c u l a t i o n   o f   d e n s i t y  p, 

e f f e c t i v e   d i f f u s i o n   c o e f f i c i e n t  r and  sources  and  sinks s o f   t h e  depen- 
dent   var iab les  are  per formed i n  separate member subrout ines  of  AUX. 

There   a re   f i ve   such subprograms i n  AUX, namely, DENSTY, YISCOS, GAMMA, 

SOURCE, and SPECIE. 

DENSTY 
This subrou t ine   ca l cu la tes   dens i t i es  p [RHO(I,Jj  and p;[RHOD(I,Jj p ,u 

i n  acco rdance   w i th   t he   d i scuss ion   o f   sec t i on  1.7. 

VISCOS 

The f u n c t i o n   o f  VISCOS i s   t o   c a l c u l a t e   t h e   l a m i n a r  and t u r b u l e n t  
"" 

V i S C O S i t Y .  I n  i t s   p r e s e n t  f o r m ,   t h e   m a j o r   f u n c t i o n   i s   t o   s t o r e   t h e  
t u r b u l e n t   v i s c o s i t i e s   i n   t h e  a r r a y  AMUT(I ,J). 

VISCOS a l s o   p e r f o r m s   t h e   f u n c t i o n   o f   c a l c u l a t i n g   f o r   t h e  N and S 

boundar ies ,   the   e f fec t i ve   boundary   d i f fus ion   based upon the   semi - logar i th -  
mic   law-of - the-wal l .  These d i f f u s i o n   c o e f f i c i e n t s   a r e   s t o r e d   r e s p e c t i v e l y  
i n  the   a r rays  GAMN(1) and GAMS(1). 

GAMMA 
GAMMA i s  used t o   s e t   v a l u e s   t o   t h e   a r r a y  GAM(1 ,J). GAM(1J) i s  

ca l cu la ted   f rom  the   f o rmu la   app rop r ia te   t o   t he   t u rbu lence  model [4]. A 
c a l l   t o  GAMOD i s  then made i n   o r d e r   t o   p e r m i t  any m o d i f i c a t i o n s   t o  be 
made t o   t h e  GAM ar ray .  

SOURCE 
Subrout ine SOURCE i s  used t o  fill the   a r rays  SU(1,J) and SP(1,J) , 

the re   be ing  a separa te   sec t ion   fo r   so   do ing   fo r   each  dependent   var iab le .  

The te rms   tha t  fill t h e s e   a r r a y s   a r e   f i n i   t e - d i f f e r e n c e   e q u i v a l e n t s   t o  
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the  source/sink terms that  appear i n  Tables 1.2-1. 

SPECIE 

Subroutine SPECIE is used t o  calculate  the  specie mass fraction 
from knowledge o f  the  element mass fractions,   pressure and temperature. 
Appendix A gives a fu l l  development o f  the  technique employed. 
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5. PROBLEM DEPENDENT SECTIONS 

5.0 Introduction 

This chapter  completes  the  detailed  description of the functions 
of the various  portions of HISS by discussing the subroutines which 
must be changed i n  order  to  specify a par t icu lar  problem. 

5.1 General policy 
As mentioned b r i e f ly   ea r l i e r ,   t he  main machinery of the numerical 

calculation  procedure  is devoid  of any problem-specification  information. 
As a general  policy, such information i s  provided th rough  subroutines 
DATA and ALLMOD. 

5.2 BLOCK DATA 
B L O C K  DATA serves t o  provide  values  to  fluid  properties, g r i d  

d i s t r ibu t ions ,  program control  parameters and other  information  specific 
t o  each new problem, via DATA statements. The use of BLOCK DATA permits 
the program t o  be run w i t h  compilers common to  bo th  CDC and IBM machines. 

5.3 ALLMOD 
Subroutine ALLMOD i s  composed of  f ive member subprograms BEGIN, 

GAMOD, SOMOD, UPSTRM and INJMOD. 

BEGIN 
The primary  purpose of this subroutine  is  t o  provide  init ial   values 

t o  a l l   the  dependent variable  arrays,   f luid-property  arrays and other 
auxi l iary  arrays.  The secondary  purposes  include  provision of ' f ixed '  
boundary conditions on the four  boundaries  of the calculation domain, and 
calculation of some auxiliary  information  required i n  the   in i t ia l iz ing  
process. 

GAMOD 
The func t ion  of modifying values of the array GAM( 1 , J )  can be per- 
" 

formed i n  GAMOD. Often, i t  i s  necessary  to change only  the boundary 
values o f  GAM; for   instance,  the d i f fus ion   coef f ic ien ts   re la t ing   to   the  
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velocity component normal t o  a wall boundary are set t o   z e r o   a t  the 
boundary i t s e l f .  The incorporation  of wall functions , however, i s  not 
performed i n  GAMOD; this function being performed i n  SOMOD. 

SOMOD 
Any desi  red  modifications  to the f in i  te-difference  coefficients 

AXM(1 , J ) ,  AXP(1,J) e tc .  , and t o  the source terms SU( 1 , J )  and S P ( I , J ) ,  
can be performed i n  SOMOD. There i s  a section i n  SOMOD corresponding 
t o  each  dependent variable. As mentioned br ief ly   ear l ier ,   the   provis ion 
of  wall-functions  are made th rough  SOMOD. This i s  achieved  as  follows: 
f i r s t ,   coef f ic ien ts   l ink ing  boundary g r i d  nodes w i t h  their immediate 
neighbors inside  the calculation domain a r e   s e t  t o  zero  for each variable.  
Then i f  an index, for  example KBCS for   the South boundary, i s   s e t  equal 
t o  unity,  the  appropriate  wall  flux i s  calculated and fed i n  through 
SU and SP. This calculation  uses  the  value o f  GAMS(I),  and the  corresponding 
f lux,  FLUXS(1,NV) of the  dependent  variable i s  stored  for  purposes  of 
p r in tou t .  If  the  index  is  other  than  unity, no change is  made t o   t h e  
coeff ic ients .  A s imilar   indice,  K B C N ,  i s  used for the - North wall. Such 
checks and modifications  are made for   the  var iables  u , v , w , k , & , h ,  and f .  

UPSTRM 
The subprogram UPSTRM makes provisions  to store upstream ( i . e .  

previous  integration  plane)  values  of major variables.  These include 
upstream members of the F array,  stored as FU (I,J,NV) , and cer ta in   other  
variables used i n  the  calculations.  Such a storage i s  required  primarily 
for   s i tua t ions  where i te ra t ions  are resorted t o  and for   calculat ion of 
source terms. 

INJMOD 
This subprogram is primarily used to   specify the correct   f lux of a 

. -  

given  variable through the  array FINJ(NV). This array is used t o  modify 
the source term i n  SOMOD when injection  occurs. 
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6. RESULTS AND CONCLUSIONS 

6.0  Introduction 

In this chapter comparison o f  predictions w i t h  experiment are  given. 

Further, sample resu l t s   for  two typical  .cases of interest , i n  th is   contract  

are  presented. 

6.1 Comparison t o  Experimental Data 

Figure 6.1-1 shows a  comparison o f  resu l t s  computed under this 

contract  versus  experimental  data from NASA [ 71. These resul ts   are  

for  normal inject ion of hydrogen i n t o  a supersonic a i r  stream. The 

conditions  are  defined i n  reference [ 7 1. The  main parameters are  as 

fol 1 ows : 

Air Stagnation Temperature = 300°K 

Air Stagnation  Pressure = 1.38 MN/m2 

Air Mach  Number = 4.05 

Number o f  J e t s  = 5  

Injector  Diameter = .1 cm 

Jet  Stagnation  Pressure = .28 MN/m2 

Jet   Stagnation Temperature = 295°K 

J e t  Mach  Number = 1  

The p lo t  i s  made for  a vertical  plane a1 i gned w i t h  the main flow direction 

and located a t  the center  of  the  plate wid th .  Three prof i les  o f  hydrogen 

concentration  are shown a t  30, 60 and 90 j e t  diameters downstream  of the 

jet .   Inspection o f  the  f igure shows excellent comparison between experi- 

mental and analyt ical   resul ts .  The 1 argest  deviation  occurs  nearest the 

in jec tor  and probably can  be ascribed  to the e l  1 i p t i c  nature  of the flow 
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i n  the j e t  region. As discussed  ear l ier   the  flow was forced t o  be para- 

bolic i n  this region. T h u s ,  as the distance from the region  increases, 

where the flow i s  parabolic,  agreement between calculation and data i s  

better. 

Also shown i n  Figure 6.1-1 is a plot   of  the experimental and  computed 

shock location. The computed shock location was taken  as  occurring a t   t h e  

peak pressure   a t  a given s ta t ion  between the wall and the  outer edge of 

the  computation  region. Again t h i s  comparison shows excellent  correlation 

w i t h  experiment. 

The correlation  discussed above i s  a strong argument for   the  val idi ty  

of  the main resu l t s   o f   th i s  work which are  described i n  the  remaining 

par t  of this  chapter.  The cold  flow  case  contains most of the  physics  of 

the  cases of i n t e r e s t ,  namely supersonic  compressible flow w i t h  a subsonic 

inner  layer and s t rong  cross  stream  interactions. 

6.2  Presentation of Typical  Results 

6.2-1 Introduction 

Results  for  ten  cases were calculated  for   this   contract  by the  techni- 

que described i n  the   f i r s t   f ive   chapters .  For each  case prof i les  of 19 

variables  described  earlier were computed f o r  a g r i d  of 1 2  g r i d  1 ines 

t ransverse  to   the flow and 20 g r i d  l i n e s  normal t o  the flow f o r  a to ta l  

of 240 po in t s   a t  each s ta t ion  i n  the main flow direct ion.  Computations 

were made for   several  hundred s ta t ions .  T h u s ,  the   total  number o f  

variables computed approaches  nearly one-mi l l i o n   f o r  each case. In this 

section results for  two typical  cases  will be presented. These resu l t s  

consist   of hydrogen concentration,  temperature and pressure d i s t r i b u t i o n s  

a t   three  axial   locat ions and a t  two locations  transverse t o  the main flow 

d i  rec t i  on. 
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6.2-2 Definition o f  Cases 

One case  for  normal injection  (case  1) and one case for paral le l  

injection  (case  9)  are  described i n  this chapter. The geometrical con- 

figuration o f  these  cases  are shown i n  Figures 6.2-1 and 6.2-2 respectively. 

Table  6.2  defines the flow and thermal properties.  

Table 6.2 Definition o f  Properties 

Location 

Main Stream 
Conditions 

J e t  
Condi t i  ons 

Property (units) 

Flow speed (m/s) 

Temperature ( O K )  

Mass fract ion N 2  

Mass fraction O2 

Mass f ract ion H20 

Pressure ( N/rn2) 

Flow speed (m/s) 

Temperature ( O K )  

Mass fract ion H 2  

Pressure N/m2 

Mass flow  kg/sec 

6.3 Graphs of Results 
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All data  are  presented  for  planes normal t o  the wall and paral le l  w i t h  

the main flow direction. One o f  these  planes i s  located i.n the  transverse 

d i rec t ion   d i rec t ly   a t  the hydrogen je t   cen ter1  ine and the other is located 

between jets  (see  Figures 6.2-1 and 6.2-2). The comparison of p ro f i l e s   a t  
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Figure 6.2-1 Definit ion of Geometry  and  Planes of Prof i les 
for Case I 
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a given s ta t ion  i n  these two planes  indicates the mixing ra te  i n  the trans- 

verse direction. Comparison of  profiles i n  a given  plane a t  various main 

flow stat ions  indicates   the  ra te  of  movement of hydrogen i n  a direction 

normal t o  the flow. 

Figures 6.3-1 through  6.3-3 are   for  normal inject ion  (case  1) .  

Figure 6.3-1 shows the d i s t r i b u t i o n  of hydrogen i n  any form a t   th ree   ax ia l  

locations (.118m, .216m and .246ni). The f i r s t   p rof i le   i s   before   the   in jec-  

t i o n  point ( .196m)  and therefore no hydr0ge.n i s  present. A t  the .216m 

location,  the hydrogen concentration  levels  ( less than  .01) indicate   that  

substantial  mixing has  occurred, and the prof i les   indicate   that  m i x i n g  

is   primarily  in  the y direction. (The close  spacing of  the  adjacent 

injectors   l imits  x direction m i x i n g . )  Examination of the   resu l t s   a t  

the .246m s ta t ion  shows continuing movement of hydrogen upward w i t h  an 

attendent smoothing of the  profi’le,  as would be expected. 

The temperature  profiles  of  Figure 6.3-2 ind ica te   tha t   a f te r   in jec t ion  

and combustion t h a t   l i t t l e   t r a n s v e r s e  thermal gradient   exis ts .   This   is  

par t ly  due t o  the   fac t   tha t   the  flame front  i s  a t  the  outer  layer o f  the 

hydrogen zone which tends t o  diffuse  the  temperature i n  the  transverse 

direct ion.  Also i t  i s  seen  that  the  reaction  of hydrogen moves the  thermal 

boundary layer  outward from the  plate w i t h  movement in  the main flow 

direction. 

The pressure d i s t r i b u t i o n  for   case 1 is  shown i n  Figure  6.3-3. I t  

exhibits the qualitative  behavior one would expect.  There i s  l i t t l e  

transverse  pressure  difference due t o  the low veloci t ies  i n  tha t   d i rec t ion .  

A pressure  spike can be seen downstream of  the j e t   i nd ica t ing  a shock. 

The pressure below the shock is essent ia l ly  uniform a t  a h igher  value 

than the free stream. I t  must be emphasized t h a t  the pressure d i s t r i b u -  

t ion i n  t h e   j e t  region i s  subject   to   error  due t o  the   fac t   tha t  the flow 
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was forced t o  be parabolic when i n  ac tua l i ty  there i s  some upstream ef fec t  

caused by the je t .  

Figures  6.3-4  through 6.3-6 a re   resu l t s  for case 9 w h i c h  i s  paral le l  

inject ion.  The diameter  of the j e t s  and j e t  spacing  are much 1 arger  than 

for  case  1.  The p ro f i l e s   a t   i n j ec t ion  (Z=O) show t h a t   t h e r e   i s   l i t t l e  

mixing  of hydrogen between j e t s .  However, as the flow moves forward the 
mixing increases such t h a t  the concentration of hydrogen between j e t s  i s  

roughly 50% of the hydrogen concentr 

However, these  f igures show tha t  i n  

hydrogen upward between j e t s   i s  not 

normal veloci t ies  for the  para1  le1 i 

ation i n  l i n e  w i t h  the j e t  a t  Z=.36 meter. 

the normal direction the movement of 

very effective.  This i s  due t o  the low 

njection  case. The temperature d i  s t r i  - 
bution i n  Figure 6.3-5 indicates a higher  temperature between j e t s  even 

though the hydrogen concentration  is  lower. This i s  because the combustion 

occurs a t  ths fr inge of the hydrogen zone. The combustion zone upper surface 

i s  indicated by the  "spikes" i n  the  temperature  profile. T h i s  combustion i s  

seen t o  grow w i t h  movement downstream. The pressure d i s t r i b u t i o n  shown i n  

Figure 6.3-6 does not  indicate any shocks. A t  the inject ion  s ta t ion (Z=O), 

the flow  expands in  the low density  region. However, a t  downstream locations 

the  pressure becomes uniform a t  approximately  the  free  stream  value. 

6.4 Concl usi ons and Recommendations 

Qualitatively  the  results  calculated by the method developed  herein 

appear t o  be correct.  Further comparison w i t h  cold flow data   a lso show 

excel lent  agreement. The computational time f o r  these resu l t s  is  excel lent  

(1  minute on a CDC 7600). 

The assumption of parabolic  flow i n  the injection  region needs  improve- 

ment because both data and calculations made i n  t h i s  work ind ica te   tha t  the 

pressure d i s t r i b u t i o n  i s  affected upstream by the je t .   Rec i rcu la t ion ,  

however, is  probably n o t  important. What i s  needed is a technique  to  allow 
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the  pressure  to be calculated  via an e l l i p t i c  procedure and the velocity by 

a parabolic one. Such a technique i s  advantageous  over f u l l y   e l l i p t i c  

procedure  because  storage and computation time are  much lower. 
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8- NOMENCLATURE 

cD 

cP 

c1 

c2 

E 

f 

- 
h 

11; 

k 

K 

mfi 

P 
P 

4 
P '  
Pr 
R 

s4 
T 

u , u *  

v,v* 

w ,w* 

w 
X 

Y 

Z 

turbulence  constant  (Table  1.2-2) 

specif ic   heat  

turbulence  constant  (Table  1.2-2) 

turbulence  constant  (Table  1.2-2) 

law of  wall  constant  (Table  1.2-2) 

mass f ract ion hydrogen i n  any form 

stagnation chemical enthalpy (Emf ho + u2+v2tw2 
i i  2 + Cp ('-'ref)) 

enthalpy of formati on 

kinet ic  energy of turbulence 

constant i n  law of wall  (Table  1.2-2) 

mass f ract ion of specie i 

pressure 
parameter  defined by Equation (1.6-6) 

pressure  correction 
Prandtl Number 

uni versa1 gas constant 

source term for  4 equation 

temperature 

corrected and uncorrected  velocity i n  x direction 

corrected and uncorrected  velocity i n  y direction 

corrected and uncorrected  velocity i n  x direction 

molecular  weight 

coordinate  defined i n  Figure  1.2-1 

coordinate  defined i n  Figure 1.2-1 

coordinate  defined i n  Figure 1.2-1 

55 



I 

NOMENCLATURE (Continued) 

conduction t ransport   coeff ic ient  i n  0 equation 

diss ipat ion  ra te  of turbulence 

1 ami nar v i  scosi ty 

effective  viscosity  ( laminar + turbulent)  

turbulent  viscosity 

dens i ty 

laminar  Prandtl or Schmidt Number for  4 

turbulent  Prandtl or Schmidt Number for  0 

general  dependent  variable i n  conservation  equation 

SUBSCRIPT 

ref  reference  value 
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APPENDIX A 

A.0 Background 

Reference [SI describes an equi 1 i b r i  um chemistry model developed and 
used i n  conjunction w i t h  a computer program to  predict   the  properties i n  a 
hydrogen-oxygen flame. The main features of the model are  described below. 

Four equi l ibr i  um reactions  are assumed as  follows: 

o + o +  0, (1) 

H + H - + H ,  ( 2 )  

0 + OH -+ H20 ( 3 )  

O + H  -+ OH ( 4 )  

The six species  involved i n  these  reactions  are  considered t o  be present 
w i t h  nitrogen which i s   i n e r t .  In developing  the  equations t o  predict the 
equilibrium  concentration o f  the  species,  two quantit ies  are  defined, 
namely 

X = m , - ,  + m o + ~  WO NO 
2 mH,O + mOH 

where X i s   the   to ta l   f rac t ion  of oxygen i n  any form and F i s   t he   t o t a l  
f ract ion of hydrogen i n  any form. Since the molecular  weight of the  various 
oxygen species i s  approximately  equal to   . that   of   ni t roqen i t  is  assumed t h a t  
the  rate  of  diffusion of ni t rogen  is  equal t o  t h a t  of the oxygen; and, there- 
fore,  nitrogen is p re sen t   a t  any location i n  a f i xed   r a t io   t o  the fraction  of 
oxygen  compounds. This f rac t ion ,  OFAC, i s  assumed constant and equal to   the  
f ract ion of oxygen i n  the a i r  bei.ng used as  the  oxidizer. T h u s ,  

The to ta l  mass f ract ion must be unity which gives 
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S u b s t i t u t i n g  equation ( 7 )  into  equation (8) and solving  for  X gives 

X = (OFAC)(l - F) (9 1 

Therefore, i f  F i s  known, X can be determined by equation ( 9 ) .  
From thermodynamic considerations  the  equilibrium  constant i s  defined 

for  the  reaction aA + bB + CC by 

where P is i n  atmospheres. 
For each of the four reactions i n  the  present model c-a-b = -1 

I t  i s  convenient t o  express the concentrations i n  terms of  mass f ract ions.  
Noting t h a t  

'i mi = - Xi 
W 

and substituting  equation (11) into  equation 

Thus the equ i l i  br ium equations for the  react 

mOH K; = - 
mO mH 

ions (1 - 4 )  can be writ ten 
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The condition of equi 1 i b r i  um i s  expressed by using  four  equi 1 ibr i  um 
constants  for  the  four chemical reactions. Once F and X are  specified,  
the  six  species (mH,, mH, mo,, mo, mOH, mH,O) can be determined from 
equations (5), ( 6 ) ,  (13) ,  ( 14) ,  (15),  and (16) in which these  species 
are unknowns. The procedure  adopted i n  [l] was t o  solve a d i f f e ren t i a l  
equation  for  the  distribution of F and then t o  solve  equations (5 ) ,  (6 ) ,  
(13) ,  (14) ,  (15) ,  and (16) for  the  concentration  of  individual  species. 
In reference [ 11 the  values  of  species  concentration just upstream  of 
the  point  being  considered were used t o  choose the 1 argest term in b o t h  
F and X .  The mass fractions o f  remaining  species were calculated from 
equations  (13 - 16) using  the  upstream  temperature  for  specifying  the 
equilibrium  constants and the  values of the upstream species mass fraction 
which consti tute  the  largest  terms  in F and X. New values o f  mass 
fraction of  the  largest  species were calculated from equations ( 5 )  and ( 6 )  
using  the newly calculated  values  for  the  remaining  species. The process 
was repeated  until  convergence t o  a specified  l imit  was achieved.  There 
are a t  least   three major deficiencies with t h i s  approach: 

(1)  Extreme care must be used in  specifying  the  init ial  
mass fractions;  otherwise,  the  iteration  procedure 
di  verges ; 

( 2 )  Near the  stoichiometric  point  several o f  the  species have 
mass fractions which are  approximately  equal.  This 
causes  different  species t o  have the  largest  mass fraction 
in  successive  steps  in  the  iteration  procedure  resulting 
i n  i n s t a b i l i t y ;  and 

(3 )  A 1 arge amount of computer 1 ogi c i s  required t o  handle 
the  extreme  variations  in  the T n p u t  parameters  resulting 
i n  relatively  large  computational  times. 

The continued  use  of  the model and equations employed i n  reference [l] i s  
recommended in  this  paper. However, a new solution  procedure is proposed. 

The remaining  discussion  defines  the  proposed new solution  procedure 
and gives some resul ts  and conclusions  regarding i t s   app l i ca t ion .  
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A. 1 Derivation of Solution  Procedure 

The present  procedure i s  based on the  reduction of the number of 
variables under consideration. Two equations  are  derived  as  follows. 
Equations (13 - 16) are  solved t o  give  the  relationships: 

1 
mo = 

I t  i s  convenient t o  define  the  following  parameters: 

A = -  - 1  
YK; 

Using equations (17 - 20) t o  eliminate moy mH20y mH and m0H from 
equations (5 )  and (6)  gives : 
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r 1 1 

where the  definit ions g i v e n  by equations (21  - 24) have been used. 
These equations have the form o f  a quadratic  equation: 

a u 2  + tTu + c = 0 

and solution C31 

Note t h a t  and 6 are  always posit ive and c i s  always negative.  Since 
u>O, the  physically meaningful roo t   i s  

This par t icular  form o f  quadratic  expression  is chosen since i t  does n o t  
require  subtraction and gives  greater  precision. Using equation ( 2 7 )  t o  
express  the  solution o f  equations (25 )  and (26)  gives 

mo 2 

1 2 

L 

(29 1 
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Equations (28) and (29) contain the unknowns mO2 and mH . Before de ta i l ing  
the solution  procedure  several  properties  of these equations will be 
discussed.  Table I gives the values o f  Ki, K;, KS, KG, A ,  B y  cy a n d D   f o r  
the temperatures from 100 t o  6000 K a t  a constant PW product  of 2.5 (cor- 
responding  approximately t o  1/10 atmosphere). Note that   while  the individual 
constants vary from less  than 1 t o  1O1O0 , the groups  appearing i n  equations 
(28) and ( 2 9 )  vary much l e s s  and can be easily  processed on a d ig i ta l  com- 
puter. Second i t  i s  to  be observed tha t  the equations have been derived so 
t h a t  a "natural" re1 ationship has been established between m o  and X ,  and 
w 2  and F ,  i .e .  as X 4 ,  mg +O; and as  F a ,  mH2+o. I t  should also be observed 
tha t  m O 2  and %2 can never be less  than  zero  or  greater than 1. Finally,  
neither  equation becomes indefini te   as  mH2 o r  mO2 approach  zero. T h u s ,  the 
equations  are  well-behaved and can be readily  solved  for wide variations i n  
temperature and pressure. 

2 

" 

2 

2 

The solution  procedure i s  described  next. A value of mH i s  guessed 
i n  the  following way. If  the  value  at  the  equivalent upstream s t a t i o n  is  
known,  then t h a t  value i s  used;  otherwise, a value o f  zero w i  11 always 
lead t o  a converged solution. This assumed value o f  mH i s   subs t i t u t ed  
i n t o  equation (28) which yields mo . Then the computed value of mo i s  
subst i tuted i n t o  equation ( 2 9 )  which allows  calculation o f  a new vafue  of 

. The assumed and calculated  values of  mH2 are compared. I f   t h e i r  
values   differ  by more than a specified convergence c r i te r ia ,   the   ca lcu la ted  
value of m H 2  i s  taken  as  the assumed value and the  process  described above 
i s  repeated  until convergence i s  obtained. The behavior o f  this   solut ion 
technique i s  shown i n  Figure A.1-1. 

2 

2 

2 

Figure I shows w i t h  the broken 1 ine a plot  of m H 2  calculated  versus 
mH2 as.sumed. The correct  value  is  achieved when the two values  are  equal. 
The locus  of poin ts  fo r   t h i s   s i t ua t ion   i s  a s t r a i g h t   l i n e  w i t h  a slope  of 
unity.   If  mH2 assumed i s   l e s s  than  the  correct  value,  the  figure shows 
the  calculated  value w i  11 always be larger .  T h u s  , when th is   ca lcu la ted  
value  of m H 2  i s  taken  as  the assumed value,  the  resulting newly calculated 
value w i  11 be closer t o  the  correct one. The  same argument can be made t o  
show t h a t   i f   t h e   i n i t i a l  assumed value o f  mH2 i s   too   l a rge ,   the   i t e ra t ion  
process  will  again  cause convergence t o  the  correct  value.  
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1.0 

Calculated 

” ””- 

(28) and (2 9) 
, //- ”- x From Equations 

I’ 
/ 

/ I I r 

Assumed M H ~  1.0 

A.1-1. Graphical  Plot o f  Trial-and-Error  Solution 
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A.2 Typical  Results 

The solution  procedure  described above was programmed on a d ig i ta l  
computer and used t o  determine  equilibrium  concentrations  for  variation 
i n  F and X from zero t o  one for  temperatures from 200 t o  5700 K. The 
product PW was taken a t  2.5 (approximately  1/10  atmosphere  pressure). 
Table I1 shows these  calculated  results.  The residuals  in F and X are 
shown in  the l a s t  two columns. Their  values  indicate t h a t  great  precision 
can be obtained  with th i s  method. The convergence c r i te r ia   for   these  
calculations was 

ImH,cal cul  ated - mH2assumed I < .Ool mH,cal cul  ated 

Greater  precision  could  easily be achieved by a s t r i c t e r  convergence 
c r i t e r i a ;  however, the  present one i s   s u f f i c i e n t  fo r  most practical   cal-  
cul a t i  ons . 

I t  i s  concluded t h a t  the method offers a r e l i ab le ,  simple and extremely 
f a s t  technique for solving  the  equilibrium  equations  arising from the 
chemi cal model considered  in  this work. 
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TABLE I. 

. . . . 
Temp. K 1  K ?  K 3  K4 A B C D 

-. - - 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

2000 

2200 

2400 

2600 

2800 

3000 

3200 

3400 

3600 

3800 

4000 

4200 

4400 

5.0+100 

2.8E+52 

2.3E+33 

5.9E+23 

9.7E+17 

1.2E+14 

2.1E+11 

1.7E+09 

3.9E+07 

1.9E+06 

1.5E+05 

1.9E+04 

3.4E+03 

7.5E+02 

2.OE+02 

6.3E+01 

2.3E+01 

9.3E+00 

4.1E+00 

1.9E+00 

1. OE+OO 

5.5E-01 

3.1E+99  2.6+100 

2.7E+58  3.2E+51 

4.3E+36  5.8E+32 

4.9E+25  2.2E+23 

1.2E+19  4.5E+17 

5.OE+14  7.OE+13 

3.5E+ll 1.2E+ll 

1.5E+09  1.1E+09 

2.1E+07  2.7E+07 

7.OE+05  1.4E+06 

4.3E+04  1.2E+05 

4.2E+03  1.6E+04 

5.8E+02  2.8E+03 

1.OE+02  6.4E+02 

2.4E+01  1.7E+02 

6.8E+00  5.7E+01 

2.1E+00  2.1E+01 

7.9E-01  8.6E+00 

3.2E-01  3.8E+00 

1.4E-01  1.8E+00 

6.8E-02  9.8E-01 

3.5E-02  5.4E-01 

2.6+100 

6.2E+59 

9.OE+37 

9.3E+26 

2.2E+20 

8.2E+15 

5.4E+12 

2.2E+10 

3.OE+08 

9.8E+06 

5.8E+05 

5.5  E+04 

7.6E+03 

1.3E+03 

3.1E+02 

8.5E+01 

2.7E+01 

9.8E+00 

3.9E+00 

1.7E+00 

8.3E-01 

4.2E-01 

4.4E-51 

5.9E-27 

2.OE-17 

1.2E-12 

1.OE-09 

8.7E-08 

2.1E-06 

2.4E-05 

1.5E-04 

7.2E-04 

2.5E-03 

7.OE-03 

1.7E-02 

3.6E-02 

7.OE-02 

1.2E-01 

2.OE-01 

3.2E-01 

4.9E-01 

7.OE-01 

9.8E-01 

1.3E+00 

1.7E-50 

6.OE-30 

4.7E-19 

1.4E-13 

2.7E- 10 

4.4E-08 

1.6E-06 

2.5E-05 

2.1E-04 

1.1E-03 

4.8E-03 

1.5E-02 

4.1E-02. 

9.6E-02 

2.OE-01 

3.8E-01 

6.7E-01 

l.lE+OO 

1.7E+00 

2.6E+00 

3.8E+00 

5.3E+00 

2.1E+00  2.5E+50 

1.1E-04  4.3E+29 

5.7E-03  1.OE+19 

4.OE-02  4.8E+13 

1.2E-01  2.8E+10 

2.7E-01  1.9E+08 

4.7E-01  5.5E+06 

7.OE-01  3.8E+05 

9.5E-01  4.6E+04 

1.2E+00  8.7E+03 

1.4E+00  2.2E+03 

1.7E+00  6.9E+02 

2.OE+00  2.6E+02 

2.2E+00  1.1E+02 

2.5E+00  5.5E+01 

2.7E+00  2.9E+01 

2.9E+00  1.6E+01 

3.1E+00 l.OE+Ol 

3.3E+00  6.5E+00 

3.5E+00  4.4E+00 

3.7E+00  3.OE+OO 

3.8E+00  2.2E+00 
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TABLE I. 
(Continued) 

4600 

4800 

5000 

5200 

5400 

5600 

5800 

6000 

3.2E-01 

1.9E-01 

1.2E-01 

7.9E-02 

5.3E-02 

3.6E-02 

2.6E-02 

1.8E-02 

1.8E-02 

1.OE-02 

6.4E-03 

4.OE-03 

2.5E-03 

1.7E-03 

1.1E-03 

8.1E-04 

3.1E-01 

1.9E-01 

1.2E-01 

7.8E-02 

5.3E-02 

3.6E-02 

2.6E-02 

1.8E-02 

2.2E-01 

1.3E-01 

7.7E-02 

4.8E-02 

3.1E-02 

2.OE-02 

1.4E-02 

9.8E-03 

4.OE+OO 

4.1E+00 

4.2Et00 

4.4E+00 

4.5 E+OO 

4.6E+00 

4.7E+00 

4.8Et00 

1.6E+00 

1.2E+00 

9.5E-01 

7.5E-01 

6.OE-01 

4.9E-01 

4.1E-01 

3.4E-01 
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II I 

TABLE 11. 

T e m p .  F X 
m H 2  mH mO m OH m 

H 2 O  
RES; R E S ~  

20 0 

200 

200 

200 

200 

200 

700 

700 

700 

700 

700 

700 

1200 

1200 

1200 

1200 

1200 

1200 

1700 

1700 

1700 

0 

.2 

.4 

.6 

.8 

1.0 

0 

.2 

.4 

.6 

.8 

1.0 

0 

.2 

.4 

.6 

.8 

1.0 

0 

.2 

.4 

.23200 

,18560 

.13920 

.09280 

.04640 

.ooooo 

.23200 

.18560 

.13920 

.09280 

.04640 

. 00000 

.23200 

.18560 

.13920 

.09280 

.04640 

.ooooo 

.23200 

.18560 

.13920 

,00000 

.17677 

.38259 

,58840 

.79419 

1.00000 

.ooooo 

.17677 

.38259 

.58840 

.79419 

1.00000 

.ooooo 

.17677 

.38259 

.58840 

.79419 

1.00000 

.ooooo 

.17675 

.38255 

.23200 

.ooooo 

.ooooo 

.ooooo 

.ooooo 

.ooooo 

.23200 

.ooooo 

.ooooo 

.ooooo 

.ooooo 

. 00000 

.2  3200 

. 00000 

.ooooo 

. 00000 

.ooooo 
* 00000 

.23196 

.ooooo 

.ooooo 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

.ooooo 

.00003 

.00004 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

.00004 

. 00000 

.ooooo 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

.ooooo -.ooooo 
-20903 - .0002O 
-15665 -. 00005 
.lo441 - .OOOOl 
-05228 -.00008 

.00001 -. 00000 

.ooooo -.ooooo 
-20903 -. 00020 
.15665 - .00005 
.lo441 - .OOOOl 
.05228  -.00008 

.00001 -. 00000 

.ooooo  -.ooooo 
-20903 -. 00020 
.15665 - ,00005 
-10441 -. 00001 
-05228 -. 00008 
.00001 - .ooooo 

.ooooo -.ooooo 

.20902  -.00020 

-15665 - .00005 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

* Residual i n  F equat ion (29) 
** Residual i n  X equat ion  (28) 
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TABLE 11. 
(Continued) 

Temp. F X m m mH mO mOH 
H2 02 H20 1 2 

m RES* RES** 

1700 

1700 

1700 

2200 

2200 

2200 

2200 

2200 

2200 

2700 

2700 

2 700 

2700 

2700 

2700 

3200 

3200 

3200 

3200 

3200 

3200 

.6 

.8 

1.0 

0 

.2 

.4 

.6 

.8 

1.0 

0 

.2 

.4  

.6 

.8 

1.0 

0 

.2 

.4 

.6 

.8 

1.0 

.09280 

.04640 

.ooooo 

.23200 

,18560 

.13920 

.09280 

.04640 

.ooooo 

,23200 

.18560 

.13920 

.09280 

.04640 

.ooooo 

.23200 

,18560 

.13920 

.09280 

.04640 

.ooooo 

,58835 

.79413 

.99993 

. 00000 

.17574 

.38106. 

.58648 

.79196 

.99749 

.ooooo 

.16687 

.36746 

.56941 

.77200 

.97501 

.ooooo 

.13505 

.31439 

.50086 

.69065 

.88249 

.ooooo 
,00000 

.ooooo 

,22970 

.ooooo 

.ooooo 

.ooooo 

.ooooo 

. 00000 

.20310 

.00005 

.00001 

. 00000 

.ooooo 

.ooooo 

.lo689 

.00142 

.00019 

.00004 

.00001 

.ooooo 

.00005 

.00006 

.00007 

. 00000 

.00105 

.00155 

.00192 

.00223 

,00251 

.ooooo 

.01034 

.01534 

.01910 

.02223 

.02499 

.ooooo 

.04597 

.07014 

.08853 

.lo395 

.11751 

.ooooo 

.ooooo 

. 00000 

.00230 

.ooooo 

.ooooo 

.ooooo 

. 00000 

.ooooo 

.02890 

.00045 

.00016 

.00007 

.00002 

.ooooo 

.12511 

.01444 

.00527 

.00231 

.00086 

.ooooo 

0 

0 

0 

.ooooo 

.00034 

.00017 

.00009 

.00004 

.ooooo 

.ooooo 

.00620 

.00317 

.00170 

.00073 

. 00000 

.ooooo 

.03815 

.02124 

.01175 

.00514 

.ooooo 

.lo44 1 

.05228 

,00000 

.ooooo 

.20867 

,15647 

.lo431 

.05224 

.ooooo 

.ooooo 

.20189 

.15311 

.lo253 

.05148 

.ooooo 

. 00000 

.15067 

.12800 

.08933 

.04586 

.ooooo 

-. 00001 

- .00008 

- ,00000 

- .ooooo 

-. 00020 

- .00005 

-. 00001 

-. 00008 

-. 00000 

-. 00000 

-. 00019 

- .00004 

-. 00001 

- .00007 

-. 00000 

-. 00000 

-. 00011 

-. 00003 

- .00001 

-. 00006 

-. 00000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

* Residual in F equation  (29) 
** Residual in X equation  (28) 
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TABLE 11. 
(Continued) 

Temp. F X 
"Y mH mO "OH H2 0 

REST RES;* 

3700 

3700 

3700 

3700 

3700 

3700 

4200 

4200 

4200 

4200 

4200 

4200 

4700 

4700 

4700 

4700 

4 700 

4700 

5200 

5200 

5200 

0 .23200 .OOOOO ,02210 .OOOOO 

.2 .18560 .07874  .00406  .11326 

.4 .13920 .20737  .00102  .18380 

.6  .09280 .35319  .00025  .23987 

.8 .04640 .50841  .00004  .28779 

1.0 .OOOOO .66970 .OOOOO .33030 

0 .23200 .OOOOO .00357 .OOOOO 

.2 .18560 .02919  .00167  .16888 

.4  .13920 .09410  .00072  .30323 

.6  .09280 .35319  ,00025  .23987 

.8 .04640 .27764  .00005  .52084 

1.0 .OOOOO .38593 .OOOOO .a407 

0 .23200 .OOOOO .00076 .OOOOO 

.2  .18560 .00904  .00045  .19045 

-4 .13920 .03336  .00023  .36589 

.6  .09280 .06985 .00010 .52942 

.8 .04640 .11632  .00002  .68320 

1.0 .OOOOO .17119 .OOOOO .82881 

0 .23200 .OOOOO .00022 .OOOOO 

.2  .18560 .00308  .00013  .19675 

.4 .13920 .01195  .00007  .38780 

* Residual i n  F equat ion (29) 
** Residual i n  X equat ion (28) 

.20990 ,00000 

.08998  .05854 

.04514  .04766 

.02252  .03103 

.00897  .01483 

.ooooo . 00000 

.22843 .OOOOO 

.15622  .02599 

.lo272  .03068 

.02252  .03103 

.02758  .01415 

.ooooo .ooooo 

.23124 .OOOOO 

.17716  .00824 

.12760  .01140 

.08188  .01059 

.03949  .00659 

.ooooo .ooooo 

.23178 .OOOOO 

.18278  .00283 

.13517  .00413 

.ooooo - ,00000 

.04102 -. 00000 

.05420 -.OOOOO 

.04604 -. 00010 

.02640 -. 00002 

.ooooo -.ooooo 

. 00000 -. 00000 

.00366 - .OOOOO 

.00775 -. 00001 

.04604 - .OOOlO 

.00614 -.OOOOO 

.ooooo -.ooooo 

.ooooo 0 

.00027 0 

.00072 0 

.00097 0 

.00078 0 

.ooooo 0 

.ooooo 0 

.00003 0 

.00008 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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TABLE Ir. 
(Continued) 

Temp. F X "H 2 mO 2 mH mO mOH mH 20 RES; RES;* 

5200 

5200 

5200 

5700 

5700 

5700 

5700 

5700 

5700 

.6  .09280 

.8 .04640 

1.0 .ooooo 

0 .23200 

.2 .18560 

.4 .13920 

.6 .09280 

.8 .04640 

1.0 .ooooo 

.02615 

.04526 

.0689 1 

. 00000 

.00122 

.00483 

.01075 

.01889 

.02918 

.00003 

.00001 

. 00000 

.00008 

.00005 

,00003 

. 0000 1 

.ooooo 

.ooooo 

.57360 

.75458 

.93109 

.ooooo 

.19871 

.39507 

.58916 

.78105 

.97082 

.08889 

,04385 

. 00000 

.23192 

.18448 

.13758 

.09121 

.04535 

.ooooo 

.00402 

.00261 

.ooooo 

.ooooo 

.00113 

.00168 

.00166 

. 00 109 

.ooooo 

.00011 

.00009 

.ooooo 

. 00000 

.ooooo 

.00001 

.00002 

.00001 

.ooooo 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

* Residual i n  F equation (29) 
** Residual i n  X equation (28) 
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II I 

APPENDIX B 

D E F I N I T I O N  OF TERMS APPEARING I N  COMMON STATEMENTS 

AGEOM 

AK 
AKFAC 

AMU 

AMUREF 
AMUT 
BXE 

BY N 
CD 
CDQR 

CDRT 

CDTQ 

CP 

CPDCV 

c1 
C2 
DEN 

DZ 
EE 

EX 

FLOINJ  

FLUXN , FLUXS 

FRA 

FRAM 

FXM, FXP, FYM, FYP 

GAMN,  GAMS 

GAS CON 

fac tor  i n  g r i d  expansion defined i n  section 3.1 
mixing length  constant, K 
factor  relating  turbulence energy t o  mean motion 
energy 
laminar  viscosity, p 

reference  laminar  viscosity 
turbulent  viscosity,  ut 
w i d t h  of  flow region  along  x-coordinate 
wid th  of  flow  region  along  y-coordinate 
constant i n  turbulence model , CD 
CD raised  to  1/4 power 
CD raised  to  1/2 power 
CD raised t o  3/4 power 
specif ic   heat  
specific  heat  at   constant  pressure d i v i d e d  by 
spec i f ic   hea t   a t   cons tan t  volume 
constant i n  turbulence model , C, 
constant i n  turbulence model , C 2  
reference  density 
.step  length i n  z direction 
constant  in 1 aw-of-the-wal 1 , E 
factor  by which forward s tep   s ize  i s  increased 
mass flow rate   injected by a j e t  
f lux of  dependent v a r i a b l e   a t  N and S boundaries 
respectively 
fract ion of boundary height used i n  calculating 
forward s tep 
maximum fract ion o f  boundary layer  height used i n  
cal  cul a ti ng forward s tep  
interpolat ion  factors   to   indicate   dis tance of a 
pressure node from the ne ighbor ing  velocity node 
boundary value of GAM a t  N and S boundaries , 
respectively 
universal gas constant 
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GREAT 
H 
HO 
I  INJ 
IMAX 

INJSTP 
INTEX 
IPRINT 

I REF 
ISOLVE 

ISTEP 
ISTR 

ISWP 

I TE RF 
ITERM 
I XY 

JM 
J MAX 

JSTR 

JSWP 

KBCN, KBCS 

L 
LASTEP 
LCV 
LP1 
M 

MCV 
MP 1 
N FM 

large number used i n  l i m i t i n g  overflows,  etc. 
recovery  factor 
enthalpy  of  formation 
index  to  control  entry  to INJMOD 
maximum value o f  I for  which storage  locations 
are provided 
value  of ISTEP a t   in jec t ion   loca t ion  
index: 1 for  internal  flows: 2 for  external  flows 
values of a variable  printed  only  if  corresponding 
value of IPRINT is unity 
reference  value of I f o r  p r i n t o u t  
equation  for a variable i s  solved  only i f  corre- 
sponding  value  of ISOLVE is unity 
number of s ta t ion  
value  of I for   the   f i r s t   s torage   loca t ion  f o r  a 
given vari ab1 e 
index  control 1 i n g  d i  rection i f  TDMA sweep  a1 ong I 
coordinate 
counter  for  i terations on the 0 equation 
counter   for   i terat ion on the momentum equation 
index  controlling  the f i r s t  direction of a TDMA 
sweep 
(J - 1)JMAX 
maximum value o f  J for which internal  storage i s  
provided 
value  of J denoting  the f i r s t   in te rna l   s torage  
location  for a given variable 
index  denoting  the  direction  of sweep while  per- 
forming TDMA sweep i n  y-direction 
index denoting  nature  of N and S boundaries,  respec- 
t ively:  1 = wall;  2 = symmetry; 3 = f ree .  
number of g r i d  1 ines m i n u s  1 i n  x-di rection 
number of s ta t ion   for  which integration i s  t o  end 
number o f  main control volumes i n  x-di rection 
number of g r i d  1 i nes i n  x-di rection 
number of g r i d  l ines  m i n u s  1 i n  y-direction 
number o f  main control volumes in  y-direction 
number of g r i d  l ines  i n  y-direction 
number of variable (NV)*IMAX*JMAX 
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NFPMAX 

NH 
NH2 
NH 20 
MMU 
N N V  
N N 2  
NO 
NOH 
NO2 
NP JUMP 

NPP 
NRO 

NSWP 
N V  
N V D  
NVF 
N VH 
N V K  
N VP 
NVT 
N V U  
N VV 
N VW 
PIN 
P JAY 
PR 
P RLAM 
RETRAN 
SMALL 
TIN 
TINJ 

maximum  number of  variables  for which p r i n t o u t  
is arranged 
i d e n t i f i e r  of  atomic hydrogen concentration 
i d e n t i f i e r  of molecular hydrogen concentration 
i d e n t i f i e r  of  water  vapor  concentration 
i d e n t i f i e r  of  viscosi ty  
number of  dependent  variables 
identifier  of  molecular  nitrogen  concentration 
i d e n t i f i e r  of atomic oxygen concentration 
i d e n t i f i e r  of OH concentration 
i d e n t i f i e r  of  molecular oxygen concentration 
value  equals ISTEP for   pr intout  of prof i le  of 
vari ab1 es 
i d e n t i f i e r  of  pressure  correction 
i d e n t i f i e r  of  density 

number of TDMA .sweeps on a variable 
s e r i a l  number o f  any variable 
ident i f ie r   for   d i ss ipa t ion   ra te  of  turbulence 
i d e n t i f i e r   f o r  hydrogen concentration  in any form 
ident i f ier   for   enthalpy 
ident i f ier   for   turbulent   kinet ic   energy 
ident i f ie r   for   p ressure  
ident i f ier   for   temperature  
ident i f ie r   for   ve loc i ty  i n  x-direction 
ident i f ie r   for   ve loc i ty  i n  y-direction 
iden t i f i e r   fo r   ve loc i ty  i n  z-direction 
in le t   p ressure  
resistance of  laminar  sublayer, 
Prandtl number, 'Pr 
1 ami nar  Prandtl number/Schmi d t  number, 
t ransi  t i  on Reynolds number 
small number used to  control  underflows,  etc. 
i n l e t  free stream  temperature 
i n l e t  j e t  temperature 

p+ 
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I 
/ 

T I T L E  

TWAL 

U I  N 

V I N  

V I N J  

WIN 

WM 

X 
X D I  F 
xs 
xs u 
Y 

Y D I F  

YS 

YSV 

ZD 

ZETA 

Z I N J  

ZLAST 

ZRE 
zu 

any t i t l e   t o   desc r ibe   ca l cu la t ions  
wall  temperature 
in1 e t  x-di recti on velocity 
inlet   y-direct ion  veloci ty  
velocity o f  j e t  inject ion 
i nl e t  free-s tream  vel  oci  ty i n  z-di rec t i  on 
mol ecul a r  weight  
x-coordinates 
distance between g r i d  l ines  i n  x-direction 
w i d t h  of main control volume i n  x-direction 
w i d t h  of u velocity  control volume i n  x-di rection 
y-coordinates 
distance between g r i d  l ines  i n  y-direction 
w i d t h  of main control volume i n  y-di  rection 
w i d t h  of v veloci  ty  control volume i n  y-di rection 
downstream location on control volume face i n  z- 
direct ion 
x/BXE 
z location  of  injection 
z l o c a t i o n   a t  end of  integration 
values  of z f o r  which pr intout  i s  desired 
upstream location of  control volume face i n  z- 
di rect i  on 
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