414 research outputs found

    The milliarcsecond-scale radio structure of AB Dor A

    Full text link
    Context: The fast rotator, pre-main sequence star AB Dor A is a strong and persistent radio emitter. The extraordinary coronal flaring activity is thought to be the origin of compact radio emission and other associated phenomena as large slingshot prominences. Aim: We aim to investigate the radio emission mechanism and the milliarcsecond radio structure around AB Dor A. Methods: We performed phase-referenced VLBI observations at 22.3 GHz, 8.4 GHz, and 1.4 GHz over more than one decade using the Australian VLBI array. Results: Our 8.4 GHz images show a double core-halo morphology, similar at all epochs, with emission extending at heights between 5 and 18 stellar radii. Furthermore, the sequence of the 8.4 GHz maps shows a clear variation of the source structure within the observing time. However, images at 1.4 GHz and 22.3 GHz are compatible with a compact source. The phase-reference position at 8.4 GHz and 1.4 GHz are coincident with those expected from the well-known milliarcsecond-precise astrometry of this star, meanwhile the 22.3 GHz position is 4σ\sigma off the prediction in the north-west direction. The origin of this offset is still unclear. Conclusions: We have considered several models to explain the morphology and evolution of the inner radio structure detected in AB Dor A which include emission from the stellar polar caps, a flaring, magnetically-driven loop structure, and the presence of helmet streamers. A possible close companion to AB Dor A has been also investigated. Our results confirm the extraordinary coronal magnetic activity of this star, able to produce compact radio structures at very large heights, so far only seen in binary interacting systems.Comment: 11 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    The Electrical-Thermal Switching in Carbon Black-Polymer Composites as a Local Effect

    Full text link
    Following the lack of microscopic information about the intriguing well-known electrical-thermal switching mechanism in Carbon Black-Polymer composites, we applied atomic force microscopy in order to reveal the local nature of the process and correlated it with the characteristics of the widely used commercial switches. We conclude that the switching events take place in critical interparticle tunneling junctions that carry most of the current. The macroscopic switched state is then a result of a dynamic-stationary state of fast switching and slow reconnection of the corresponding junctions.Comment: 14 pages, 5 figures,Typographic correctio

    Dynamical masses of the low-mass stellar binary AB Doradus B

    Get PDF
    Context. ABDoradus is the main system of the ABDoradus moving group. It is a quadruple system formed by two widely separated binaries of pre-main-sequence (PMS) stars: ABDorA/C and ABDor Ba/Bb. The pair ABDorA/C has been extensively studied and its dynamical masses have been determined with high precision, thus making of ABDorC a benchmark for calibrating PMS stellar models. If the orbit and dynamical masses of the pair ABDor Ba/Bb can be determined, they could not only play a similar role to that of ABDorC in calibrating PMS models, but would also help to better understand the dynamics of the whole ABDoradus system. Aims. We aim to determine the individual masses of the pair ABDor Ba/Bb using VLBI observations and archive infrared data, as part of a larger program directed to monitor binary systems in the ABDoradus moving group. Methods. We observed the system ABDor B between 2007 and 2013 with the Australian Long Baseline Array (LBA), at a frequency of 8.4 GHz in phase-reference mode. Results. We detected, for the first time, compact radio emission from both stars in the binary, ABDor Ba and ABDor Bb. This result allowed us to determine the orbital parameters of both the relative and absolute orbits and, consequently, their individual dynamical masses: 0.28±0.05M_sun and 0.25±0.05M_sun, respectively. Conclusions. Comparisons of the dynamical masses with the prediction of PMS evolutionary models show that the models underpredict the dynamical masses of the binary components Ba and Bb by ~30 and 40%, respectively, although they all still agree at the 2-sigma level. The same stellar models favour an age between 50 and 100 Myr for this system. We also discuss the evolutionary status of ABDor Ba/Bb in terms of an earlier double-double star scenario that might explain the strong radio emission detected in both components

    Visualisation tool for peptide fractionation data in proteomics: application to OFFGEL isoelectric focussing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>OFFGEL isoelectric focussing (IEF) has become a popular tool in proteomics to fractionate peptides or proteins. As a consequence there is a need for software solutions supporting data mining, interpretation and characterisation of experimental quality.</p> <p>Results</p> <p>We can assess performance characteristics of OFFGEL IEF peptide fractionation in proteomics by generating plots of the overall fractionation patterns and the pairwise comparisons of adjacent fractions.</p> <p>Conclusions</p> <p>A visualisation tool for peptide fractionation has been developed to support the evaluation of IEF data quality and can be implemented in proteomics research.</p

    Annihilation of structural defects in chalcogenide absorber films for high-efficiency solar cells

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.In polycrystalline semiconductor absorbers for thin-film solar cells, structural defects may enhance electron-hole recombination and hence lower the resulting energy conversion efficiency. To be able to efficiently design and optimize fabrication processes that result in high-quality materials, knowledge of the nature of structural defects as well as their formation and annihilation during film growth is essential. Here we show that in co-evaporated Cu(In,Ga)Se-2 absorber films the density of defects is strongly influenced by the reaction path and substrate temperature during film growth. A combination of high-resolution electron microscopy, atomic force microscopy, scanning tunneling microscopy, and X-ray diffraction shows that Cu(In,Ga)Se-2 absorber films deposited at low temperature without a Cu-rich stage suffer from a high density of - partially electronically active - planar defects in the {112} planes. Real-time X-ray diffraction reveals that these faults are nearly completely annihilated during an intermediate Cu-rich process stage with [Cu]/([In] + [Ga]) > 1. Moreover, correlations between real-time diffraction and fluorescence analysis during Cu-Se deposition reveal that rapid defect annihilation starts shortly before the start of segregation of excess Cu-Se at the surface of the Cu(In,Ga)Se-2 film. The presented results hence provide direct insights into the dynamics of the film-quality-improving mechanism

    The AIQ Meta-Testbed: Pragmatically Bridging Academic AI Testing and Industrial Q Needs

    Full text link
    AI solutions seem to appear in any and all application domains. As AI becomes more pervasive, the importance of quality assurance increases. Unfortunately, there is no consensus on what artificial intelligence means and interpretations range from simple statistical analysis to sentient humanoid robots. On top of that, quality is a notoriously hard concept to pinpoint. What does this mean for AI quality? In this paper, we share our working definition and a pragmatic approach to address the corresponding quality assurance with a focus on testing. Finally, we present our ongoing work on establishing the AIQ Meta-Testbed.Comment: Accepted for publication in the Proc. of the Software Quality Days 2021, Vienna, Austri

    A digitally-augmented ground space with timed visual cues for facilitating forearm crutches’ mobility

    Get PDF
    Persuasive technologies for physical rehabilitation have been pro posed in a number of different health interventions such as post-stroke gait rehabilitation. We propose a new persuasive system, called Augmented Crut ches, aimed at helping people to walk with crutches. People with injuries, or with any sort of mobility problem typically use assistive devices such as crut ches, walkers or canes in order to be able to walk more independently. However, walking with crutches is a learning skill that needs continuous repetition and constant attention to detail in order to walk correctly with them and without suffering negative consequences, such as falls or injuries. In close collaboration with therapists, we identify the main issues that patients face when walking with crutches. These vary from person to person, but the most common and hardest challenges are the position and coordination of the crutches. Augmented Crut ches studies human behavior aspects in these situations and augments the ground space around the user with digital visual cues where timing is the most important factor, without the need for a constant therapist providing manual help. This is performed through a mini-projector connected to a smartphone, worn by the user in a portable, lightweight manner. Our system helps people to learn how to walk using crutches with increased self-confidence and motivation. Additionally, our work identifies timing, controllability and awareness as the key design dimensions for the successful creation of persuasive, interactive experiences for learning how to walk with crutches.info:eu-repo/semantics/publishedVersio
    corecore