11 research outputs found

    Where have all the petrels gone? Forty years (1978–2020) of Wilson’s Storm Petrel (Oceanites oceanicus) population dynamics at King George Island (Isla 25 de Mayo, Antarctica) in a changing climate

    Get PDF
    Numerous seabird species are experiencing population declines, and this trend is expected to continue or even accelerate in the future. To understand the effects of environmental change on seabird populations, long-term studies are vital, but rare. Here, we present over four decades (1978–2020) of population dynamic and reproductive performance data of Wilson’s Storm Petrels (Oceanites oceanicus) from King George Island (Isla 25 de Mayo), Antarctica. We determined temporal trends in population size, breeding output, and chick growth rates, and related interannual variation in these variables to various environmental variables. Our study revealed a decline of 90% in population size of Wilson’s Storm Petrels in two colonies, and considerable changes in breeding output and chick growth rates. Temporal changes in breeding demographics were linked to interannual environmental variation, either causing changes in food availability (particularly Antarctic krill, Euphausia superba) or in nest burrow accessibility due to snow blocking the entrance. With the expected rise in air and sea surface temperatures, the predicted increases in precipitation over the Antarctic Peninsula will likely lead to increased snowstorm prevalence. Additionally, the rising temperatures will likely reduce food availability due to reduced sea ice cover in the wintering grounds of Antarctic krill, or by changing phyto- and zooplankton community compositions. The ongoing environmental changes may thus lead to a further population decline, or at the very least will not allow the population to recover. Monitoring the population dynamics of Antarctic seabirds is vital to increase our understanding of climate change-induced changes in polar food webs

    Fungal Planet description sheets: 154–213

    Get PDF
    Novel species of microfungi described in the present study include the following from South Africa: Camarosporium aloes, Phaeococcomyces aloes and Phoma aloes from Aloe, C. psoraleae, Diaporthe psoraleae and D. psoraleae-pinnatae from Psoralea, Colletotrichum euphorbiae from Euphorbia, Coniothyrium prosopidis and Peyronellaea prosopidis from Prosopis, Diaporthe cassines from Cassine, D. diospyricola from Diospyros, Diaporthe maytenicola from Maytenus, Harknessia proteae from Protea, Neofusicoccum ursorum and N. cryptoaustrale from Eucalyptus, Ochrocladosporium adansoniae from Adansonia, Pilidium pseudoconcavum from Greyia radlkoferi, Stagonospora pseudopaludosa from Phragmites and Toxicocladosporium ficiniae from Ficinia. Several species were also described from Thailand, namely: Chaetopsina pini and C. pinicola from Pinus spp., Myrmecridium thailandicum from reed litter, Passalora pseudotithoniae from Tithonia, Pallidocercospora ventilago from Ventilago, Pyricularia bothriochloae from Bothriochloa and Sphaerulina rhododendricola from Rhododendron. Novelties from Spain include Cladophialophora multiseptata, Knufia tsunedae and Pleuroascus rectipilus from soil and Cyphellophora catalaunica from river sediments. Species from the USA include Bipolaris drechsleri from Microstegium, Calonectria blephiliae from Blephilia, Kellermania macrospora (epitype) and K. pseudoyuccigena from Yucca. Three new species are described from Mexico, namely Neophaeosphaeria agaves and K. agaves from Agave and Phytophthora ipomoeae from Ipomoea. Other African species include Calonectria mossambicensis from Eucalyptus (Mozambique), Harzia cameroonensis from an unknown creeper (Cameroon), Mastigosporella anisophylleae from Anisophyllea (Zambia) and Teratosphaeria terminaliae from Terminalia (Zimbabwe). Species from Europe include Auxarthron longisporum from forest soil (Portugal), Discosia pseudoartocreas from Tilia (Austria), Paraconiothyrium polonense and P. lycopodinum from Lycopodium (Poland) and Stachybotrys oleronensis from Iris (France). Two species of Chrysosporium are described from Antarctica, namely C. magnasporum and C. oceanitesii. Finally, Licea xanthospora is described from Australia, Hypochnicium huinayensis from Chile and Custingophora blanchettei from Uruguay. Novel genera of Ascomycetes include Neomycosphaerella from Pseudopentameris macrantha (South Africa), and Paramycosphaerella from Brachystegia sp. (Zimbabwe). Novel hyphomycete genera include Pseudocatenomycopsis from Rothmannia (Zambia), Neopseudocercospora from Terminalia (Zambia) and Neodeightoniella from Phragmites (South Africa), while Dimorphiopsis from Brachystegia (Zambia) represents a novel coelomycetous genus. Furthermore, Alanphillipsia is introduced as a new genus in the Botryosphaeriaceae with four species, A. aloes, A. aloeigena and A. aloetica from Aloe spp. and A. euphorbiae from Euphorbia sp. (South Africa). A new combination is also proposed for Brachysporium torulosum (Deightoniella black tip of banana) as Corynespora torulosa. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa

    Pertussis epidemiology in Argentina: trends over 2004-2007

    No full text
    Fil: Hozbor, Daniela. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Mooi, F. National Institute for Public Health and the Environment,.Netherlands Centre for Infectious Diseases Control. Laboratory for Infectious Diseases and Screening (LIS); Países Bajos.Fil: Flores, D. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Weltman, Gabriela. ANLIS Dr.C.G.Malbrån. Instituto Nacional de Enfermedades Infecciosas. Departamento de Bacteriología. Servicio de Bacteriología Clínica; Argentina.Fil: Bottero, D. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Fossati, Sofía. ANLIS Dr.C.G.Malbrån. Instituto Nacional de Enfermedades Infecciosas. Departamento de Bacteriología. Servicio de Bacteriología Clínica; Argentina.Fil: Lara, Claudia. ANLIS Dr.C.G.Malbrån. Instituto Nacional de Enfermedades Infecciosas. Departamento de Bacteriología. Servicio de Bacteriología Clínica; Argentina.Fil: Gaillard, M. E. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Pianciola, Luis. Subsecretaría de Salud de Neuquén. Laboratorio Central, Neuquén; Argentina.Fil: Zurita, E. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Fioriti, A. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Archuby, Daniela. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Galas, Marcelo F. ANLIS Dr.C.G.Malbrån. Instituto Nacional de Enfermedades Infecciosas. Departamento de Bacteriología. Servicio de Bacteriología Clínica; Argentina.Fil: Binsztein, Norma. ANLIS Dr.C.G.Malbrån. Instituto Nacional de Enfermedades Infecciosas. Departamento de Bacteriología. Servicio de Bacteriología Clínica; Argentina.Fil: Regueira, Mabel. ANLIS Dr.C.G.Malbrån. Instituto Nacional de Enfermedades Infecciosas. Departamento de Bacteriología. Servicio de Bacteriología Clínica; Argentina.Fil: Castuma, C. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Fingermann, Matías. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Graieb, A. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Objectives Pertussis continues causing significant morbidity and mortality worldwide. Although its epidemiology has been studied in many developed countries, the current pertussis situation in South America is scarcely known. This review summarizes the most important recent data concerning pertussis in a country of South America, Argentina. Methods CDC criteria were used for pertussis diagnosis. Proportion of pertussis cases by age, immunization status, and immunization coverage rate evaluated at the Argentinean National Pertussis Reference Centers was reported. Bordetella pertussis isolates were characterized and compared with vaccine strains. Results From 2002 to nowadays, a steady increase of pertussis cases was observed. Most of these cases correspond to patients younger than six months old that received less than three doses of vaccine. However, cases in adolescent and adults have also been detected. For this situation, which is not peculiar to Argentina, several explanations have been proposed. Among them, the inability of current vaccines to induce long-lasting immunity is the most widely accepted as a cause of pertussis resurgence. Furthermore, antigenic divergence between local clinical isolates and vaccine strains may have aggravated the effect of waning immunity. Conclusions Pertussis is an important problem for public health in Argentina. Divergence between vaccine strains and local isolates could contribute to the described pertussis epidemiology

    Correction: Where have all the petrels gone? Forty years (1978–2020) of Wilson’s Storm Petrel (Oceanites oceanicus) population dynamics at King George Island (Isla 25 de Mayo, Antarctica) in a changing climate

    No full text
    Ausems ANMA, Kuepper ND, Archuby D, et al. Correction: Where have all the petrels gone? Forty years (1978–2020) of Wilson’s Storm Petrel (Oceanites oceanicus) population dynamics at King George Island (Isla 25 de Mayo, Antarctica) in a changing climate. Polar Biology . 2024;47(2):187

    Where have all the petrels gone? Forty years (1978 - 2020) of Wilson's Storm Petrel (Oceanites oceanicus) population dynamics at King George Island (Islas 25 de Mayo, Antarctica) in a changing climate - Adults

    No full text
    This data set describes the population dynamics of adult Wilson's Storm Petrels (Oceanites oceanicus) at King George Island (Isla 25 de Mayo, Antarctica) over a forty year period (1978 – 2020). It includes all available data on Wilson's Storm Petrels from two colonies: around the Argentinian Base Carlini (62°14â€ČS, 58°40â€ČW; CA, formerly called Base Jubany) and the Henryk Arctowski Polish Antarctic Station (62°09â€ČS, 58°27â€ČW; HA). Data on population productivity (number of nests, eggs, chicks and fledglings) was collected by regular visits to the colonies and searching for nest burrows, or monitoring of the egg or chick if found. Data on adult abundance and estimated age categories (i.e., presence of foot spots; Quillfeldt et al., 2000) were collected at CA by using the same size mistnet every study year in the same location within the breeding colony. Chicks were measured regularly (varying intervals depending on the study) at both CA and HA. Chick tarsus was measured using callipers (vernier or digital depending on the study year) to the nearest 0.1 mm, chick wing length was measured using wing rulers to the nearest 1 mm, and chick body mass was measured using mechanical or digital scales depending on the study year to the nearest 0.1 g. Chick growth rates were calculated based on the linear growth period following Ausems et al. (2020). Chick food loads (g) were recorded at CA and determined based on changes in chick body mass on consecutive days (Gladbach et al., 2009; Kuepper et al., 2018)

    Where have all the petrels gone? Forty years (1978 - 2020) of Wilson's Storm Petrel (Oceanites oceanicus) population dynamics at King George Island (Islas 25 de Mayo, Antarctica) in a changing climate - Colony

    No full text
    This data set describes the population dynamics of Wilson's Storm Petrels (Oceanites oceanicus) colonies at King George Island (Isla 25 de Mayo, Antarctica) over a forty year period (1978 – 2020). It includes all available data on Wilson's Storm Petrels from two colonies: around the Argentinian Base Carlini (62°14â€ČS, 58°40â€ČW; CA, formerly called Base Jubany) and the Henryk Arctowski Polish Antarctic Station (62°09â€ČS, 58°27â€ČW; HA). Data on population productivity (number of nests, eggs, chicks and fledglings) was collected by regular visits to the colonies and searching for nest burrows, or monitoring of the egg or chick if found. Data on adult abundance and estimated age categories (i.e., presence of foot spots; Quillfeldt et al., 2000) were collected at CA by using the same size mistnet every study year in the same location within the breeding colony. Chicks were measured regularly (varying intervals depending on the study) at both CA and HA. Chick tarsus was measured using callipers (vernier or digital depending on the study year) to the nearest 0.1 mm, chick wing length was measured using wing rulers to the nearest 1 mm, and chick body mass was measured using mechanical or digital scales depending on the study year to the nearest 0.1 g. Chick growth rates were calculated based on the linear growth period following Ausems et al. (2020). Chick food loads (g) were recorded at CA and determined based on changes in chick body mass on consecutive days (Gladbach et al., 2009; Kuepper et al., 2018)

    Fungal Planet description sheets: 154–213

    No full text
    Novel species of microfungi described in the present study include the following from South Africa: Camarosporium aloes, Phaeococcomyces aloes and Phoma aloes from Aloe, C. psoraleae, Diaporthe psoraleae and D. psoraleae-pinnatae from Psoralea, Colletotrichum euphorbiae from Euphorbia, Coniothyrium prosopidis and Peyronellaea prosopidis from Prosopis, Diaporthe cassines from Cassine, D. diospyricola from Diospyros, Diaporthe maytenicola from Maytenus, Harknessia proteae from Protea, Neofusicoccum ursorum and N. cryptoaustrale from Eucalyptus, Ochrocladosporium adansoniae from Adansonia, Pilidium pseudoconcavum from Greyia radlkoferi, Stagonospora pseudopaludosa from Phragmites and Toxicocladosporium ficiniae from Ficinia. Several species were also described from Thailand, namely: Chaetopsina pini and C. pinicola from Pinus spp., Myrmecridium thailandicum from reed litter, Passalora pseudotithoniae from Tithonia, Pallidocercospora ventilago from Ventilago, Pyricularia bothriochloae from Bothriochloa and Sphaerulina rhododendricola from Rhododendron. Novelties from Spain include Cladophialophora multiseptata, Knufia tsunedae and Pleuroascus rectipilus from soil and Cyphellophora catalaunica from river sediments. Species from the USA include Bipolaris drechsleri from Microstegium, Calonectria blephiliae from Blephilia, Kellermania macrospora (epitype) and K. pseudoyuccigena from Yucca. Three new species are described from Mexico, namely Neophaeosphaeria agaves and K. agaves from Agave and Phytophthora ipomoeae from Ipomoea. Other African species include Calonectria mossambicensis from Eucalyptus (Mozambique), Harzia cameroonensis from an unknown creeper (Cameroon), Mastigosporella anisophylleae from Anisophyllea (Zambia) and Teratosphaeria terminaliae from Terminalia (Zimbabwe). Species from Europe include Auxarthron longisporum from forest soil (Portugal), Discosia pseudoartocreas from Tilia (Austria), Paraconiothyrium polonense and P. lycopodinum from Lycopodium (Poland) and Stachybotrys oleronensis from Iris (France). Two species of Chrysosporium are described from Antarctica, namely C. magnasporum and C. oceanitesii. Finally, Licea xanthospora is described from Australia, Hypochnicium huinayensis from Chile and Custingophora blanchettei from Uruguay. Novel genera of Ascomycetes include Neomycosphaerella from Pseudopentameris macrantha (South Africa), and Paramycosphaerella from Brachystegia sp. (Zimbabwe). Novel hyphomycete genera include Pseudocatenomycopsis from Rothmannia (Zambia), Neopseudocercospora from Terminalia (Zambia) and Neodeightoniella from Phragmites (South Africa), while Dimorphiopsis from Brachystegia (Zambia) represents a novel coelomycetous genus. Furthermore, Alanphillipsia is introduced as a new genus in the Botryosphaeriaceae with four species, A. aloes, A. aloeigena and A. aloetica from Aloe spp. and A. euphorbiae from Euphorbia sp. (South Africa). A new combination is also proposed for Brachysporium torulosum (Deightoniella black tip of banana) as Corynespora torulosa. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa

    Intertidal Death Assemblages as Proxies of Marine Biodiversity: An Example from Northern Patagonia, Argentina

    No full text
    Marine conservation biologists have identified mollusks as one of the appropriate surrogate taxa for characterizing marine benthic diversity. In turn, live/dead comparison studies have overwhelmingly demonstrated that mollusk remains are faithful proxies of the mollusk composition of the living communities from which they come, with positive consequences for the paleoecological evaluation of fossil assemblages. In this contribution, we evaluate the way in which mollusk biodiversity is distributed along the lower intertidal to supratidal (high water mark) dead shell assemblages accumulated on a northern Patagonian rocky shore, in order to explore the usefulness of these assemblages as paleontological proxies and potential surrogates of regional biodiversity. A diversity gradient from the lower intertidal to the supratidal was identified which is probably associated with vertical transport, although the influence of gradients of the living community should be tested to confirm this. The outstanding result of this study is the discovery of high levels of diversity among dead shells (31 bivalves and 39 gastropod species) in a single locality and with a moderate sampling effort. The supratidal death assemblage has higher species richness than expected, possibly caused by stranding of the fauna after storms. Nevertheless, this level shows the lowest level of evenness and a strong bias when samples are not sieved through a fine mesh. The record of marine benthic diversity in death assemblages is a promising area of research that deserves to be explored in depth.Fil: Archuby, Fernando. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de InvestigaciĂłn en PaleobiologĂ­a y GeologĂ­a; ArgentinaFil: Roche, Andrea. Universidad Nacional del Comahue. Centro de InvestigaciĂłn Aplicada y Transferencia TecnolĂłgica en Recursos Marinos "Almirante Storni". - Provincia de RĂ­o Negro. Ministerio de Agricultura, GanaderĂ­a y Pesca. Centro de InvestigaciĂłn Aplicada y Transferencia TecnolĂłgica en Recursos Marinos "Almirante Storni". Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet Centro Nacional PatagĂłnico. Centro de InvestigaciĂłn Aplicada y Transferencia TecnolĂłgica en Recursos Marinos "Almirante Storni"; Argentina. Universidad Nacional del Comahue. Escuela de Ciencias Marinas; Argentin
    corecore