4,845 research outputs found
Hydrodynamics of internal solitons and a comparison of SIR-A and SIR-B data with ocean measurements
Large internal solitary waves have been observed by Shuttle SIR-A and SIR-B at locations in the Andaman Sea and the New York Bight. Satellite imagery and oceanographic measurements are used in conjunction with hydrodynamic interaction and electromagnetic scattering models to estimate the expected SAR image intensity modulations associated with the internal waves. There is reasonable agreement between the predicted and observed internal wave signatures
Comment on "Spin relaxation in quantum Hall systems"
W. Apel and Yu.A. Bychkov have recently considered the spin relaxation in a
2D quantum Hall system for the filling factor close to unity [PRL v.82, 3324
(1999)]. The authors considered only one spin flip mechanism (direct
spin-phonon coupling) among several possible spin-orbit related ones and came
to the conclusion that the spin relaxation time due to this mechanism is quite
short: around s at B=10 T (for GaAs). This time is much shorter than
the typical time ( s) obtained earlier by D. Frenkel while considering
the spin relaxation of 2D electrons in a quantizing magnetic field without the
Coulomb interaction and for the same spin-phonon coupling. I show that the
authors' conclusion about the value of the spin-flip time is wrong and have
deduced the correct time which is by several orders of magnitude longer. I also
discuss the admixture mechanism of the spin-orbit interaction.Comment: 1 pag
Phase-field simulations of solidification in binary and ternary systems using a finite element method
We present adaptive finite element simulations of dendritic and eutectic
solidification in binary and ternary alloys. The computations are based on a
recently formulated phase-field model that is especially appropriate for
modelling non-isothermal solidification in multicomponent multiphase systems.
In this approach, a set of governing equations for the phase-field variables,
for the concentrations of the alloy components and for the temperature has to
be solved numerically, ensuring local entropy production and the conservation
of mass and inner energy. To efficiently perform numerical simulations, we
developed a numerical scheme to solve the governing equations using a finite
element method on an adaptive non-uniform mesh with highest resolution in the
regions of the phase boundaries. Simulation results of the solidification in
ternary NiCuCr alloys are presented investigating the
influence of the alloy composition on the growth morphology and on the growth
velocity. A morphology diagram is obtained that shows a transition from a
dendritic to a globular structure with increasing Cr concentrations.
Furthermore, we comment on 2D and 3D simulations of binary eutectic phase
transformations. Regular oscillatory growth structures are observed combined
with a topological change of the matrix phase in 3D. An outlook for the
application of our methods to describe AlCu eutectics is given.Comment: 5 pages, 3 figures, To appear in the proceedings of 14th
"International Conference on Crystal Growth", ICCG-14, 9-13 August 2004
Grenoble Franc
Radiolarian faunal characteristics in Oligocene of the Kerguelen Plateau, Leg 183, Site 1138
Three sites from Ocean Drilling Program (ODP) Leg 183 (Kerguelen Plateau) have been analyzed to document faunal change in high-latitude radiolarians and to compare the faunal change to Eocene-Oligocene climatic deterioration. Radiolarians are not preserved in Eocene sediments. In Oligocene sediments, radiolarian preservation improves in a stepwise manner toward the Miocene. A total of 115 species were found in lower Oligocene samples from Site 1138; all are documented herein. Radiolarian preservation is presumably linked to productivity triggered by climatic cooling during the early Oligocene. Similar patterns of improving preservation through the Eocene/Oligocene boundary are documented from several Deep Sea Drilling Project and ODP sites in the Southern Ocean, indicating a general pattern. In contrast to the Southern Kerguelen Plateau, however, proxies for productivity are more divergent at Site 1138 (Central Kerguelen Plateau). Whereas carbonate dissolution, as indicated by poor preservation of foraminifers and common hiatuses, is very pronounced in the upper Eocene-lowermost Oligocene, the quality of radiolarian and diatom preservation does not significantly increase until the uppermost lower Oligocene. Multiple measures of radiolarian diversity in the Oligocene from Site 1138 closely parallel radiolarian preservation, indicating that preserved radiolarian diversity is controlled by productivity
Constructive factorization of LPDO in two variables
We study conditions under which a partial differential operator of arbitrary
order in two variables or ordinary linear differential operator admits a
factorization with a first-order factor on the left. The factorization process
consists of solving, recursively, systems of linear equations, subject to
certain differential compatibility conditions. In the generic case of partial
differential operators one does not have to solve a differential equation. In
special degenerate cases, such as ordinary differential, the problem is finally
reduced to the solution of some Riccati equation(s). The conditions of
factorization are given explicitly for second- and, and an outline is given for
the higher-order case.Comment: 16 pages, to be published in Journal "Theor. Math. Phys." (2005
Upper tropospheric ozone production from lightning NO_x-impacted convection: Smoke ingestion case study from the DC3 campaign
As part of the Deep Convective Cloud and Chemistry (DC3) experiment, the National Science Foundation/National Center for Atmospheric Research (NCAR) Gulfstream-V (GV) and NASA DC-8 research aircraft probed the chemical composition of the inflow and outflow of two convective storms (north storm, NS, south storm, SS) originating in the Colorado region on 22 June 2012, a time when the High Park wildfire was active in the area. A wide range of trace species were measured on board both aircraft including biomass burning (BB) tracers hydrogen cyanide (HCN) and acetonitrile (ACN). Acrolein, a much shorter lived tracer for BB, was also quantified on the GV. The data demonstrated that the NS had ingested fresh smoke from the High Park fire and as a consequence had a higher VOC OH reactivity than the SS. The SS lofted aged fire tracers along with other boundary layer ozone precursors and was more impacted by lightning NO_x (LNO_x) than the NS. The NCAR master mechanism box model was initialized with measurements made in the outflow of the two storms. The NS and SS were predicted to produce 11 and 14 ppbv of O_3, respectively, downwind of the storm over 2 days. Sensitivity tests revealed that the ozone production potential of the SS was highly dependent on LNO_x. Normalized excess mixing ratios, ΔX/ΔCO, for HCN and ACN were determined in both the fire plume and the storm outflow and found to be 7.0 ± 0.5 and 2.3 ± 0.5 pptv ppbv^(−1), respectively, and 1.4 ± 0.3 pptv ppbv^(−1) for acrolein in the outflow only
Quantum Hall Ferromagnets: Induced Topological term and electromagnetic interactions
The quantum Hall ground state in materials like GaAs is well known
to be ferromagnetic in nature. The exchange part of the Coulomb interaction
provides the necessary attractive force to align the electron spins
spontaneously. The gapless Goldstone modes are the angular deviations of the
magnetisation vector from its fixed ground state orientation. Furthermore, the
system is known to support electrically charged spin skyrmion configurations.
It has been claimed in the literature that these skyrmions are fermionic owing
to an induced topological Hopf term in the effective action governing the
Goldstone modes. However, objections have been raised against the method by
which this term has been obtained from the microscopics of the system. In this
article, we use the technique of the derivative expansion to derive, in an
unambiguous manner, the effective action of the angular degrees of freedom,
including the Hopf term. Furthermore, we have coupled perturbative
electromagnetic fields to the microscopic fermionic system in order to study
their effect on the spin excitations. We have obtained an elegant expression
for the electromagnetic coupling of the angular variables describing these spin
excitations.Comment: 23 pages, Plain TeX, no figure
Macroscopic Geo-Magnetic Radiation Model; Polarization effects and finite volume calculations
An ultra-high-energy cosmic ray (UHECR) colliding with the Earth's atmosphere
gives rise to an Extensive Air Shower (EAS). Due to different charge separation
mechanisms within the thin shower front coherent electromagnetic radiation will
be emitted within the radio frequency range. A small deviation of the index of
refraction from unity will give rise to Cherenkov radiation up to distances of
100 meters from the shower core and therefore has to be included in a complete
description of the radio emission from an EAS. Interference between the
different radiation mechanisms, in combination with different polarization
behavior will reflect in a lateral distribution function (LDF) depending on the
orientation of the observer and a non-trivial fall-off of the radio signal as
function of distance to the shower core.Comment: Proceedings of the ARENA2010 conference, Nantes, Franc
Massive Spin Collective Mode in Quantum Hall Ferromagnet
It is shown that the collective spin rotation of a single Skyrmion in quantum
Hall ferromagnet can be regarded as precession of the entire spin texture in
the external magnetic field, with an effective moment of inertia which becomes
infinite in the zero g-factor limit. This low-lying spin excitation may
dramatically enhance the nuclear spin relaxation rate via the hyperfine
interaction in the quantum well slightly away from filling factor equal one.Comment: 4 page
Delocalization in Coupled Luttinger Liquids with Impurities
We study effects of quenched disorder on coupled two-dimensional arrays of
Luttinger liquids (LL) as a model for stripes in high-T_c compounds. In the
framework of a renormalization-group analysis, we find that weak inter-LL
charge-density-wave couplings are always irrelevant as opposed to the pure
system. By varying either disorder strength, intra- or inter-LL interactions,
the system can undergo a delocalization transition between an insulator and a
novel strongly anisotropic metallic state with LL-like transport. This state is
characterized by short-ranged charge-density-wave order, the superconducting
order is quasi long-ranged along the stripes and short-ranged in the
transversal direction.Comment: 6 pages, 5 figures, substantially extended and revised versio
- …
