66 research outputs found

    Dual-PEEC Modeling of a Two-Port TEM Cell for VHF Applications

    Get PDF
    Two-port TEM cells with rectangular cross section are commonly used to produce plane electromagnetic waves with high electric field. The non-uniform structure makes the use of numerical methods extremely useful in the design phase in order to achieve a very good behavior of the TEM cell over a wide frequency range of operation. In this paper an extended version of PEEC is used to study a real device and results are compared with experimental ones

    C/EBPd gene targets in human keratinocytes

    Get PDF
    C/EBPs are a family of B-Zip transcription factors -TFs- involved in the regulation of differentiation in several tissues. The two most studied members -C/EBP\u3b1 and C/EBP\u3b2- play important roles in skin homeostasis and their ablation reveals cells with stem cells signatures. Much less is known about C/EBP\u3b4 which is highly expressed in the granular layer of interfollicular epidermis and is a direct target of p63, the master regular of multilayered epithelia. We identified C/EBP\u3b4 target genes in human primary keratinocytes by ChIP on chip and profiling of cells functionally inactivated with siRNA. Categorization suggests a role in differentiation and control of cell-cycle, particularly of G2/M genes. Among positively controlled targets are numerous genes involved in barrier function. Functional inactivation of C/EBP\u3b4 as well as overexpressions of two TF targets -MafB and SOX2- affect expression of markers of keratinocyte differentiation. We performed IHC on skin tumor tissue arrays: expression of C/EBP\u3b4 is lost in Basal Cell Carcinomas, but a majority of Squamous Cell Carcinomas showed elevated levels of the protein. Our data indicate that C/EBP\u3b4 plays a role in late stages of keratinocyte differentiation

    Glycerol treatment as recovery procedure for cryopreserved human skin allografts positive for bacteria and fungi

    Get PDF
    Human donor skin allografts are suitable and much used temporary biological (burn) wound dressings. They prepare the excised wound bed for final autografting and form an excellent substrate for revascularisation and for the formation of granulation tissue. Two preservation methods, glycerol preservation and cryopreservation, are commonly used by tissue banks for the long-term storage of skin grafts. The burn surgeons of the Queen Astrid Military Hospital preferentially use partly viable cryopreserved skin allografts. After mandatory 14-day bacterial and mycological culture, however, approximately 15% of the cryopreserved skin allografts cannot be released from quarantine because of positive culture. To maximize the use of our scarce and precious donor skin, we developed a glycerolisation-based recovery method for these culture positive cryopreserved allografts. The inactivation and preservation method, described in this paper, allowed for an efficient inactivation of the colonising bacteria and fungi, with the exception of spore-formers, and did not influence the structural and functional aspects of the skin allografts

    Activin A Induces Langerhans Cell Differentiation In Vitro and in Human Skin Explants

    Get PDF
    Langerhans cells (LC) represent a well characterized subset of dendritic cells located in the epidermis of skin and mucosae. In vivo, they originate from resident and blood-borne precursors in the presence of keratinocyte-derived TGFβ. Ιn vitro, LC can be generated from monocytes in the presence of GM-CSF, IL-4 and TGFβ. However, the signals that induce LC during an inflammatory reaction are not fully investigated. Here we report that Activin A, a TGFβ family member induced by pro-inflammatory cytokines and involved in skin morphogenesis and wound healing, induces the differentiation of human monocytes into LC in the absence of TGFβ. Activin A-induced LC are Langerin+, Birbeck granules+, E-cadherin+, CLA+ and CCR6+ and possess typical APC functions. In human skin explants, intradermal injection of Activin A increased the number of CD1a+ and Langerin+ cells in both the epidermis and dermis by promoting the differentiation of resident precursor cells. High levels of Activin A were present in the upper epidermal layers and in the dermis of Lichen Planus biopsies in association with a marked infiltration of CD1a+ and Langerin+ cells. This study reports that Activin A induces the differentiation of circulating CD14+ cells into LC. Since Activin A is abundantly produced during inflammatory conditions which are also characterized by increased numbers of LC, we propose that this cytokine represents a new pathway, alternative to TGFβ, responsible for LC differentiation during inflammatory/autoimmune conditions

    Systems of Differential Algebraic Equations in Computational Electromagnetics

    Full text link
    Starting from space-discretisation of Maxwell's equations, various classical formulations are proposed for the simulation of electromagnetic fields. They differ in the phenomena considered as well as in the variables chosen for discretisation. This contribution presents a literature survey of the most common approximations and formulations with a focus on their structural properties. The differential-algebraic character is discussed and quantified by the differential index concept

    Teleferica In Particolare Forestale E Metodo Per Il Suo Funzionamento

    No full text
    teleferica gravitazionale elettrrica con accumulo. Una l'energa gravitazionale liberata dal carrello carico in discesa per caricare una batteria al litio che poi alimenta il carrello in risalita. Un'unica macchina elettrica funziona da generaroeew e motore

    Discontinuous finite element methods for the simulation of rotating electrical machines

    No full text
    The capability of discontinuous finite element methods of handling non-matching grids is exploited in the simulation of rotating electrical machines. During time stepping, the relative movement of two meshes, consistent with two different regions of the electrical device (rotor and stator), results in the generation of so-called hanging nodes on the slip surface. A discretisation of the problem in the air-gap region between rotor and stator, which relies entirely on finite element methods, is presented here. A discontinuous Galerkin method is applied in a small region containing the slip surface, and a conforming method is used in the remaining part

    Efficient use of the local discontinuous Galerkin method for meshes sliding on a circular boundary

    No full text
    In this paper, the coupling of discontinuous finite elements (FEs) with standard conforming ones is applied to the special case of rotating electrical machines. The proposed scheme exploits the capability of discontinuous methods of dealing with non-matching grids, and the lower computational cost of conforming methods, by using first ones only where needed. Therefore, the technique is ideally suited for the treatment of the air-gap region of such devices where the rotation of one part of the mesh generates hanging nodes. The resulting purely finite element scheme is applied to the TEAM 24 benchmark proble
    corecore