37 research outputs found

    PialNN: A fast deep learning framework for cortical pial surface reconstruction

    Get PDF
    Traditional cortical surface reconstruction is time consuming and limited by the resolution of brain Magnetic Resonance Imaging (MRI). In this work, we introduce Pial Neural Network (PialNN), a 3D deep learning framework for pial surface reconstruction. PialNN is trained end-to-end to deform an initial white matter surface to a target pial surface by a sequence of learned deformation blocks. A local convolutional operation is incorporated in each block to capture the multi-scale MRI information of each vertex and its neighborhood. This is fast and memory-efficient, which allows reconstructing a pial surface mesh with 150k vertices in one second. The performance is evaluated on the Human Connectome Project (HCP) dataset including T1-weighted MRI scans of 300 subjects. The experimental results demonstrate that PialNN reduces the geometric error of the predicted pial surface by 30% compared to state-of-the-art deep learning approaches. The codes are publicly available at https://github.com/m-qiang/PialNN

    High-Performance Motion Correction of Fetal MRI

    Get PDF
    Fetal Magnetic Resonance Imaging (MRI) shows promising results for pre-natal diagnostics. The detection of potentially lifethreatening abnormalities in the fetus can be difficult with ultrasound alone. MRI is one of the few safe alternative imaging modalities in pregnancy. However, to date it has been limited by unpredictable fetal and maternal motion during acquisition. Motion between the acquisitions of individual slices of a 3D volume results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms to solve this problem have evolved from very slow implementations targeting a single organ to general high-performance solutions to reconstruct the whole uterus. In this paper we give a brief overview over the current state-of-the art in fetal motion compensation methods and show currently emerging clinical applications of these technique

    Fast multiple landmark localisation using a patch-based iterative network

    Get PDF
    We propose a new Patch-based Iterative Network (PIN) for fast and accurate landmark localisation in 3D medical volumes. PIN utilises a Convolutional Neural Network (CNN) to learn the spatial relationship between an image patch and anatomical landmark positions. During inference, patches are repeatedly passed to the CNN until the estimated landmark position converges to the true landmark location. PIN is computationally efficient since the inference stage only selectively samples a small number of patches in an iterative fashion rather than a dense sampling at every location in the volume. Our approach adopts a multi-task learning framework that combines regression and classification to improve localisation accuracy. We extend PIN to localise multiple landmarks by using principal component analysis, which models the global anatomical relationships between landmarks. We have evaluated PIN using 72 3D ultrasound images from fetal screening examinations. PIN achieves quantitatively an average landmark localisation error of 5.59mm and a runtime of 0.44s to predict 10 landmarks per volume. Qualitatively, anatomical 2D standard scan planes derived from the predicted landmark locations are visually similar to the clinical ground truth

    Standard plane detection in 3D fetal ultrasound using an iterative transformation network

    Get PDF
    Standard scan plane detection in fetal brain ultrasound (US) forms a crucial step in the assessment of fetal development. In clinical settings, this is done by manually manoeuvring a 2D probe to the desired scan plane. With the advent of 3D US, the entire fetal brain volume containing these standard planes can be easily acquired. However, manual standard plane identification in 3D volume is labour-intensive and requires expert knowledge of fetal anatomy. We propose a new Iterative Transformation Network (ITN) for the automatic detection of standard planes in 3D volumes. ITN uses a convolutional neural network to learn the relationship between a 2D plane image and the transformation parameters required to move that plane towards the location/orientation of the standard plane in the 3D volume. During inference, the current plane image is passed iteratively to the network until it converges to the standard plane location. We explore the effect of using different transformation representations as regression outputs of ITN. Under a multi-task learning framework, we introduce additional classification probability outputs to the network to act as confidence measures for the regressed transformation parameters in order to further improve the localisation accuracy. When evaluated on 72 US volumes of fetal brain, our method achieves an error of 3.83mm/12.7 degrees and 3.80mm/12.6 degrees for the transventricular and transcerebellar planes respectively and takes 0.46s per plane

    Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid Constrained Semi-Supervised Learning and Dual-UNet

    Full text link
    Catheter segmentation in 3D ultrasound is important for computer-assisted cardiac intervention. However, a large amount of labeled images are required to train a successful deep convolutional neural network (CNN) to segment the catheter, which is expensive and time-consuming. In this paper, we propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method, but nevertheless achieves better performance. Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation and which can efficiently localize the target catheter. With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data. To train the Dual-UNet with limited labeled images and leverage information of unlabeled images, we propose a novel semi-supervised scheme, which exploits unlabeled images based on hybrid constraints from predictions. Experiments show the proposed scheme achieves a higher performance than state-of-the-art semi-supervised methods, while it demonstrates that our method is able to learn from large-scale unlabeled images.Comment: Accepted by MICCAI 202

    Oxidative Stress-Induced STIM2 Cysteine Modifications Suppress Store-Operated Calcium Entry

    Get PDF
    Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies

    Human genome meeting 2016 : Houston, TX, USA. 28 February - 2 March 2016

    Get PDF
    : O1 The metabolomics approach to autism: identification of biomarkers for early detection of autism spectrum disorder A. K. Srivastava, Y. Wang, R. Huang, C. Skinner, T. Thompson, L. Pollard, T. Wood, F. Luo, R. Stevenson O2 Phenome-wide association study for smoking- and drinking-associated genes in 26,394 American women with African, Asian, European, and Hispanic descents R. Polimanti, J. Gelernter O3 Effects of prenatal environment, genotype and DNA methylation on birth weight and subsequent postnatal outcomes: findings from GUSTO, an Asian birth cohort X. Lin, I. Y. Lim, Y. Wu, A. L. Teh, L. Chen, I. M. Aris, S. E. Soh, M. T. Tint, J. L. MacIsaac, F. Yap, K. Kwek, S. M. Saw, M. S. Kobor, M. J. Meaney, K. M. Godfrey, Y. S. Chong, J. D. Holbrook, Y. S. Lee, P. D. Gluckman, N. Karnani, GUSTO study group O4 High-throughput identification of specific qt interval modulating enhancers at the SCN5A locus A. Kapoor, D. Lee, A. Chakravarti O5 Identification of extracellular matrix components inducing cancer cell migration in the supernatant of cultivated mesenchymal stem cells C. Maercker, F. Graf, M. Boutros O6 Single cell allele specific expression (ASE) IN T21 and common trisomies: a novel approach to understand DOWN syndrome and other aneuploidies G. Stamoulis, F. Santoni, P. Makrythanasis, A. Letourneau, M. Guipponi, N. Panousis, M. Garieri, P. Ribaux, E. Falconnet, C. Borel, S. E. Antonarakis O7 Role of microRNA in LCL to IPSC reprogramming S. Kumar, J. Curran, J. Blangero O8 Multiple enhancer variants disrupt gene regulatory network in Hirschsprung disease S. Chatterjee, A. Kapoor, J. Akiyama, D. Auer, C. Berrios, L. Pennacchio, A. Chakravarti O9 Metabolomic profiling for the diagnosis of neurometabolic disorders T. R. Donti, G. Cappuccio, M. Miller, P. Atwal, A. Kennedy, A. Cardon, C. Bacino, L. Emrick, J. Hertecant, F. Baumer, B. Porter, M. Bainbridge, P. Bonnen, B. Graham, R. Sutton, Q. Sun, S. Elsea O10 A novel causal methylation network approach to Alzheimer’s disease Z. Hu, P. Wang, Y. Zhu, J. Zhao, M. Xiong, David A Bennett O11 A microRNA signature identifies subtypes of triple-negative breast cancer and reveals MIR-342-3P as regulator of a lactate metabolic pathway A. Hidalgo-Miranda, S. Romero-Cordoba, S. Rodriguez-Cuevas, R. Rebollar-Vega, E. Tagliabue, M. Iorio, E. D’Ippolito, S. Baroni O12 Transcriptome analysis identifies genes, enhancer RNAs and repetitive elements that are recurrently deregulated across multiple cancer types B. Kaczkowski, Y. Tanaka, H. Kawaji, A. Sandelin, R. Andersson, M. Itoh, T. Lassmann, the FANTOM5 consortium, Y. Hayashizaki, P. Carninci, A. R. R. Forrest O13 Elevated mutation and widespread loss of constraint at regulatory and architectural binding sites across 11 tumour types C. A. Semple O14 Exome sequencing provides evidence of pathogenicity for genes implicated in colorectal cancer E. A. Rosenthal, B. Shirts, L. Amendola, C. Gallego, M. Horike-Pyne, A. Burt, P. Robertson, P. Beyers, C. Nefcy, D. Veenstra, F. Hisama, R. Bennett, M. Dorschner, D. Nickerson, J. Smith, K. Patterson, D. Crosslin, R. Nassir, N. Zubair, T. Harrison, U. Peters, G. Jarvik, NHLBI GO Exome Sequencing Project O15 The tandem duplicator phenotype as a distinct genomic configuration in cancer F. Menghi, K. Inaki, X. Woo, P. Kumar, K. Grzeda, A. Malhotra, H. Kim, D. Ucar, P. Shreckengast, K. Karuturi, J. Keck, J. Chuang, E. T. Liu O16 Modeling genetic interactions associated with molecular subtypes of breast cancer B. Ji, A. Tyler, G. Ananda, G. Carter O17 Recurrent somatic mutation in the MYC associated factor X in brain tumors H. Nikbakht, M. Montagne, M. Zeinieh, A. Harutyunyan, M. Mcconechy, N. Jabado, P. Lavigne, J. Majewski O18 Predictive biomarkers to metastatic pancreatic cancer treatment J. B. Goldstein, M. Overman, G. Varadhachary, R. Shroff, R. Wolff, M. Javle, A. Futreal, D. Fogelman O19 DDIT4 gene expression as a prognostic marker in several malignant tumors L. Bravo, W. Fajardo, H. Gomez, C. Castaneda, C. Rolfo, J. A. Pinto O20 Spatial organization of the genome and genomic alterations in human cancers K. C. Akdemir, L. Chin, A. Futreal, ICGC PCAWG Structural Alterations Group O21 Landscape of targeted therapies in solid tumors S. Patterson, C. Statz, S. Mockus O22 Genomic analysis reveals novel drivers and progression pathways in skin basal cell carcinoma S. N. Nikolaev, X. I. Bonilla, L. Parmentier, B. King, F. Bezrukov, G. Kaya, V. Zoete, V. Seplyarskiy, H. Sharpe, T. McKee, A. Letourneau, P. Ribaux, K. Popadin, N. Basset-Seguin, R. Ben Chaabene, F. Santoni, M. Andrianova, M. Guipponi, M. Garieri, C. Verdan, K. Grosdemange, O. Sumara, M. Eilers, I. Aifantis, O. Michielin, F. de Sauvage, S. Antonarakis O23 Identification of differential biomarkers of hepatocellular carcinoma and cholangiocarcinoma via transcriptome microarray meta-analysis S. Likhitrattanapisal O24 Clinical validity and actionability of multigene tests for hereditary cancers in a large multi-center study S. Lincoln, A. Kurian, A. Desmond, S. Yang, Y. Kobayashi, J. Ford, L. Ellisen O25 Correlation with tumor ploidy status is essential for correct determination of genome-wide copy number changes by SNP array T. L. Peters, K. R. Alvarez, E. F. Hollingsworth, D. H. Lopez-Terrada O26 Nanochannel based next-generation mapping for interrogation of clinically relevant structural variation A. Hastie, Z. Dzakula, A. W. Pang, E. T. Lam, T. Anantharaman, M. Saghbini, H. Cao, BioNano Genomics O27 Mutation spectrum in a pulmonary arterial hypertension (PAH) cohort and identification of associated truncating mutations in TBX4 C. Gonzaga-Jauregui, L. Ma, A. King, E. Berman Rosenzweig, U. Krishnan, J. G. Reid, J. D. Overton, F. Dewey, W. K. Chung O28 NORTH CAROLINA macular dystrophy (MCDR1): mutations found affecting PRDM13 K. Small, A. DeLuca, F. Cremers, R. A. Lewis, V. Puech, B. Bakall, R. Silva-Garcia, K. Rohrschneider, M. Leys, F. S. Shaya, E. Stone O29 PhenoDB and genematcher, solving unsolved whole exome sequencing data N. L. Sobreira, F. Schiettecatte, H. Ling, E. Pugh, D. Witmer, K. Hetrick, P. Zhang, K. Doheny, D. Valle, A. Hamosh O30 Baylor-Johns Hopkins Center for Mendelian genomics: a four year review S. N. Jhangiani, Z. Coban Akdemir, M. N. Bainbridge, W. Charng, W. Wiszniewski, T. Gambin, E. Karaca, Y. Bayram, M. K. Eldomery, J. Posey, H. Doddapaneni, J. Hu, V. R. Sutton, D. M. Muzny, E. A. Boerwinkle, D. Valle, J. R. Lupski, R. A. Gibbs O31 Using read overlap assembly to accurately identify structural genetic differences in an ashkenazi jewish trio S. Shekar, W. Salerno, A. English, A. Mangubat, J. Bruestle O32 Legal interoperability: a sine qua non for international data sharing A. Thorogood, B. M. Knoppers, Global Alliance for Genomics and Health - Regulatory and Ethics Working Group O33 High throughput screening platform of competent sineups: that can enhance translation activities of therapeutic target H. Takahashi, K. R. Nitta, A. Kozhuharova, A. M. Suzuki, H. Sharma, D. Cotella, C. Santoro, S. Zucchelli, S. Gustincich, P. Carninci O34 The undiagnosed diseases network international (UDNI): clinical and laboratory research to meet patient needs J. J. Mulvihill, G. Baynam, W. Gahl, S. C. Groft, K. Kosaki, P. Lasko, B. Melegh, D. Taruscio O36 Performance of computational algorithms in pathogenicity predictions for activating variants in oncogenes versus loss of function mutations in tumor suppressor genes R. Ghosh, S. Plon O37 Identification and electronic health record incorporation of clinically actionable pharmacogenomic variants using prospective targeted sequencing S. Scherer, X. Qin, R. Sanghvi, K. Walker, T. Chiang, D. Muzny, L. Wang, J. Black, E. Boerwinkle, R. Weinshilboum, R. Gibbs O38 Melanoma reprogramming state correlates with response to CTLA-4 blockade in metastatic melanoma T. Karpinets, T. Calderone, K. Wani, X. Yu, C. Creasy, C. Haymaker, M. Forget, V. Nanda, J. Roszik, J. Wargo, L. Haydu, X. Song, A. Lazar, J. Gershenwald, M. Davies, C. Bernatchez, J. Zhang, A. Futreal, S. Woodman O39 Data-driven refinement of complex disease classification from integration of heterogeneous functional genomics data in GeneWeaver E. J. Chesler, T. Reynolds, J. A. Bubier, C. Phillips, M. A. Langston, E. J. Baker O40 A general statistic framework for genome-based disease risk prediction M. Xiong, L. Ma, N. Lin, C. Amos O41 Integrative large-scale causal network analysis of imaging and genomic data and its application in schizophrenia studies N. Lin, P. Wang, Y. Zhu, J. Zhao, V. Calhoun, M. Xiong O42 Big data and NGS data analysis: the cloud to the rescue O. Dobretsberger, M. Egger, F. Leimgruber O43 Cpipe: a convergent clinical exome pipeline specialised for targeted sequencing S. Sadedin, A. Oshlack, Melbourne Genomics Health Alliance O44 A Bayesian classification of biomedical images using feature extraction from deep neural networks implemented on lung cancer data V. A. A. Antonio, N. Ono, Clark Kendrick C. Go O45 MAV-SEQ: an interactive platform for the Management, Analysis, and Visualization of sequence data Z. Ahmed, M. Bolisetty, S. Zeeshan, E. Anguiano, D. Ucar O47 Allele specific enhancer in EPAS1 intronic regions may contribute to high altitude adaptation of Tibetans C. Zeng, J. Shao O48 Nanochannel based next-generation mapping for structural variation detection and comparison in trios and populations H. Cao, A. Hastie, A. W. Pang, E. T. Lam, T. Liang, K. Pham, M. Saghbini, Z. Dzakula O49 Archaic introgression in indigenous populations of Malaysia revealed by whole genome sequencing Y. Chee-Wei, L. Dongsheng, W. Lai-Ping, D. Lian, R. O. Twee Hee, Y. Yunus, F. Aghakhanian, S. S. Mokhtar, C. V. Lok-Yung, J. Bhak, M. Phipps, X. Shuhua, T. Yik-Ying, V. Kumar, H. Boon-Peng O50 Breast and ovarian cancer prevention: is it time for population-based mutation screening of high risk genes? I. Campbell, M.-A. Young, P. James, Lifepool O53 Comprehensive coverage from low DNA input using novel NGS library preparation methods for WGS and WGBS C. Schumacher, S. Sandhu, T. Harkins, V. Makarov O54 Methods for large scale construction of robust PCR-free libraries for sequencing on Illumina HiSeqX platform H. DoddapaneniR. Glenn, Z. Momin, B. Dilrukshi, H. Chao, Q. Meng, B. Gudenkauf, R. Kshitij, J. Jayaseelan, C. Nessner, S. Lee, K. Blankenberg, L. Lewis, J. Hu, Y. Han, H. Dinh, S. Jireh, K. Walker, E. Boerwinkle, D. Muzny, R. Gibbs O55 Rapid capture methods for clinical sequencing J. Hu, K. Walker, C. Buhay, X. Liu, Q. Wang, R. Sanghvi, H. Doddapaneni, Y. Ding, N. Veeraraghavan, Y. Yang, E. Boerwinkle, A. L. Beaudet, C. M. Eng, D. M. Muzny, R. A. Gibbs O56 A diploid personal human genome model for better genomes from diverse sequence data K. C. C. Worley, Y. Liu, D. S. T. Hughes, S. C. Murali, R. A. Harris, A. C. English, X. Qin, O. A. Hampton, P. Larsen, C. Beck, Y. Han, M. Wang, H. Doddapaneni, C. L. Kovar, W. J. Salerno, A. Yoder, S. Richards, J. Rogers, J. R. Lupski, D. M. Muzny, R. A. Gibbs O57 Development of PacBio long range capture for detection of pathogenic structural variants Q. Meng, M. Bainbridge, M. Wang, H. Doddapaneni, Y. Han, D. Muzny, R. Gibbs O58 Rhesus macaques exhibit more non-synonymous variation but greater impact of purifying selection than humans R. A. Harris, M. Raveenedran, C. Xue, M. Dahdouli, L. Cox, G. Fan, B. Ferguson, J. Hovarth, Z. Johnson, S. Kanthaswamy, M. Kubisch, M. Platt, D. Smith, E. Vallender, R. Wiseman, X. Liu, J. Below, D. Muzny, R. Gibbs, F. Yu, J. Rogers O59 Assessing RNA structure disruption induced by single-nucleotide variation J. Lin, Y. Zhang, Z. Ouyang P1 A meta-analysis of genome-wide association studies of mitochondrial dna copy number A. Moore, Z. Wang, J. Hofmann, M. Purdue, R. Stolzenberg-Solomon, S. Weinstein, D. Albanes, C.-S. Liu, W.-L. Cheng, T.-T. Lin, Q. Lan, N. Rothman, S. Berndt P2 Missense polymorphic genetic combinations underlying down syndrome susceptibility E. S. Chen P4 The evaluation of alteration of ELAM-1 expression in the endometriosis patients H. Bahrami, A. Khoshzaban, S. Heidari Keshal P5 Obesity and the incidence of apolipoprotein E polymorphisms in an assorted population from Saudi Arabia population K. K. R. Alharbi P6 Genome-associated personalized antithrombotical therapy for patients with high risk of thrombosis and bleeding M. Zhalbinova, A. Akilzhanova, S. Rakhimova, M. Bekbosynova, S. Myrzakhmetova P7 Frequency of Xmn1 polymorphism among sickle cell carrier cases in UAE population M. Matar P8 Differentiating inflammatory bowel diseases by using genomic data: dimension of the problem and network organization N. Mili, R. Molinari, Y. Ma, S. Guerrier P9 Vulnerability of genetic variants to the risk of autism among Saudi children N. Elhawary, M. Tayeb, N. Bogari, N. Qotb P10 Chromatin profiles from ex vivo purified dopaminergic neurons establish a promising model to support studies of neurological function and dysfunction S. A. McClymont, P. W. Hook, L. A. Goff, A. McCallion P11 Utilization of a sensitized chemical mutagenesis screen to identify genetic modifiers of retinal dysplasia in homozygous Nr2e3rd7 mice Y. Kong, J. R. Charette, W. L. Hicks, J. K. Naggert, L. Zhao, P. M. Nishina P12 Ion torrent next generation sequencing of recessive polycystic kidney disease in Saudi patients B. M. Edrees, M. Athar, F. A. Al-Allaf, M. M. Taher, W. Khan, A. Bouazzaoui, N. A. Harbi, R. Safar, H. Al-Edressi, A. Anazi, N. Altayeb, M. A. Ahmed, K. Alansary, Z. Abduljaleel P13 Digital expression profiling of Purkinje neurons and dendrites in different subcellular compartments A. Kratz, P. Beguin, S. Poulain, M. Kaneko, C. Takahiko, A. Matsunaga, S. Kato, A. M. Suzuki, N. Bertin, T. Lassmann, R. Vigot, P. Carninci, C. Plessy, T. Launey P14 The evolution of imperfection and imperfection of evolution: the functional and functionless fractions of the human genome D. Graur P16 Species-independent identification of known and novel recurrent genomic entities in multiple cancer patients J. Friis-Nielsen, J. M. Izarzugaza, S. Brunak P18 Discovery of active gene modules which are densely conserved across multiple cancer types reveal their prognostic power and mutually exclusive mutation patterns B. S. Soibam P19 Whole exome sequencing of dysplastic leukoplakia tissue indicates sequential accumulation of somatic mutations from oral precancer to cancer D. Das, N. Biswas, S. Das, S. Sarkar, A. Maitra, C. Panda, P. Majumder P21 Epigenetic mechanisms of carcinogensis by hereditary breast cancer genes J. J. Gruber, N. Jaeger, M. Snyder P22 RNA direct: a novel RNA enrichment strategy applied to transcripts associated with solid tumors K. Patel, S. Bowman, T. Davis, D. Kraushaar, A. Emerman, S. Russello, N. Henig, C. Hendrickson P23 RNA sequencing identifies gene mutations for neuroblastoma K. Zhang P24 Participation of SFRP1 in the modulation of TMPRSS2-ERG fusion gene in prostate cancer cell lines M. Rodriguez-Dorantes, C. D. Cruz-Hernandez, C. D. P. Garcia-Tobilla, S. Solorzano-Rosales P25 Targeted Methylation Sequencing of Prostate Cancer N. JĂ€ger, J. Chen, R. Haile, M. Hitchins, J. D. Brooks, M. Snyder P26 Mutant TPMT alleles in children with acute lymphoblastic leukemia from MĂ©xico City and YucatĂĄn, Mexico S. JimĂ©nez-Morales, M. RamĂ­rez, J. Nuñez, V. Bekker, Y. Leal, E. JimĂ©nez, A. Medina, A. Hidalgo, J. MejĂ­a P28 Genetic modifiers of Alström syndrome J. Naggert, G. B. Collin, K. DeMauro, R. Hanusek, P. M. Nishina P31 Association of genomic variants with the occurrence of angiotensin-converting-enzyme inhibitor (ACEI)-induced coughing among Filipinos E. M. Cutiongco De La Paz, R. Sy, J. Nevado, P. Reganit, L. Santos, J. D. Magno, F. E. Punzalan , D. Ona , E. Llanes, R. L. Santos-Cortes , R. Tiongco, J. Aherrera, L. Abrahan, P. Pagauitan-Alan; Philippine Cardiogenomics Study Group P32 The use of “humanized” mouse models to validate disease association of a de novo GARS variant and to test a novel gene therapy strategy for Charcot-Marie-Tooth disease type 2D K. H. Morelli, J. S. Domire, N. Pyne, S. Harper, R. Burgess P34 Molecular regulation of chondrogenic human induced pluripotent stem cells M. A. Gari, A. Dallol, H. Alsehli, A. Gari, M. Gari, A. Abuzenadah P35 Molecular profiling of hematologic malignancies: implementation of a variant assessment algorithm for next generation sequencing data analysis and clinical reporting M. Thomas, M. Sukhai, S. Garg, M. Misyura, T. Zhang, A. Schuh, T. Stockley, S. Kamel-Reid P36 Accessing genomic evidence for clinical variants at NCBI S. Sherry, C. Xiao, D. Slotta, K. Rodarmer, M. Feolo, M. Kimelman, G. Godynskiy, C. O’Sullivan, E. Yaschenko P37 NGS-SWIFT: a cloud-based variant analysis framework using control-accessed sequencing data from DBGAP/SRA C. Xiao, E. Yaschenko, S. Sherry P38 Computational assessment of drug induced hepatotoxicity through gene expression profiling C. Rangel-Escareño, H. Rueda-Zarate P40 Flowr: robust and efficient pipelines using a simple language-agnostic approach;ultraseq; fast modular pipeline for somatic variation calling using flowr S. Seth, S. Amin, X. Song, X. Mao, H. Sun, R. G. Verhaak, A. Futreal, J. Zhang P41 Applying “Big data” technologies to the rapid analysis of heterogenous large cohort data S. J. Whiite, T. Chiang, A. English, J. Farek, Z. Kahn, W. Salerno, N. Veeraraghavan, E. Boerwinkle, R. Gibbs P42 FANTOM5 web resource for the large-scale genome-wide transcription start site activity profiles of wide-range of mammalian cells T. Kasukawa, M. Lizio, J. Harshbarger, S. Hisashi, J. Severin, A. Imad, S. Sahin, T. C. Freeman, K. Baillie, A. Sandelin, P. Carninci, A. R. R. Forrest, H. Kawaji, The FANTOM Consortium P43 Rapid and scalable typing of structural variants for disease cohorts W. Salerno, A. English, S. N. Shekar, A. Mangubat, J. Bruestle, E. Boerwinkle, R. A. Gibbs P44 Polymorphism of glutathione S-transferases and sulphotransferases genes in an Arab population A. H. Salem, M. Ali, A. Ibrahim, M. Ibrahim P46 Genetic divergence of CYP3A5*3 pharmacogenomic marker for native and admixed Mexican populations J. C. Fernandez-Lopez, V. Bonifaz-Peña, C. Rangel-Escareño, A. Hidalgo-Miranda, A. V. Contreras P47 Whole exome sequence meta-analysis of 13 white blood cell, red blood cell, and platelet traits L. Polfus, CHARGE and NHLBI Exome Sequence Project Working Groups P48 Association of adipoq gene with type 2 diabetes and related phenotypes in african american men and women: The jackson heart study S. Davis, R. Xu, S. Gebeab, P Riestra, A Gaye, R. Khan, J. Wilson, A. Bidulescu P49 Common variants in casr gene are associated with serum calcium levels in koreans S. H. Jung, N. Vinayagamoorthy, S. H. Yim, Y. J. Chung P50 Inference of multiple-wave population admixture by modeling decay of linkage disequilibrium with multiple exponential functions Y. Zhou, S. Xu P51 A Bayesian framework for generalized linear mixed models in genome-wide association studies X. Wang, V. Philip, G. Carter P52 Targeted sequencing approach for the identification of the genetic causes of hereditary hearing impairment A. A. Abuzenadah, M. Gari, R. Turki, A. Dallol P53 Identification of enhancer sequences by ATAC-seq open chromatin profiling A. Uyar, A. Kaygun, S. Zaman, E. Marquez, J. George, D. Ucar P54 Direct enrichment for the rapid preparation of targeted NGS libraries C. L. Hendrickson, A. Emerman, D. Kraushaar, S. Bowman, N. Henig, T. Davis, S. Russello, K. Patel P56 Performance of the Agilent D5000 and High Sensitivity D5000 ScreenTape assays for the Agilent 4200 Tapestation System R. Nitsche, L. Prieto-Lafuente P57 ClinVar: a multi-source archive for variant interpretation M. Landrum, J. Lee, W. Rubinstein, D. Maglott P59 Association of functional variants and protein physical interactions of human MUTY homolog linked with familial adenomatous polyposis and colorectal cancer syndrome Z. Abduljaleel, W. Khan, F. A. Al-Allaf, M. Athar , M. M. Taher, N. Shahzad P60 Modification of the microbiom constitution in the gut using chicken IgY antibodies resulted in a reduction of acute graft-versus-host disease after experimental bone marrow transplantation A. Bouazzaoui, E. Huber, A. Dan, F. A. Al-Allaf, W. Herr, G. Sprotte, J. Köstler, A. Hiergeist, A. Gessner, R. Andreesen, E. Holler P61 Compound heterozygous mutation in the LDLR gene in Saudi patients suffering severe hypercholesterolemia F. Al-Allaf, A. Alashwal, Z. Abduljaleel, M. Taher, A. Bouazzaoui, H. Abalkhail, A. Al-Allaf, R. Bamardadh, M. Atha

    Immunocytochemical characterization of primary teeth pulp stem cells from three stages of resorption in serum‐free medium

    No full text
    Background/Aims Dental pulp stem cells from primary teeth cultured in serum‐free conditions may have clinical use for the repair and regeneration of teeth as well as other complex tissues and organs. The aim of this study was to test the change in the stem cell markers expression/ stem cell population in human primary pulp cells at the different stages of root resorption. Methods Caries‐free human primary canines at defined stages of physiological root resorption were included (n = 9). In vitro cultures were established in xeno‐free, serum‐free Essential 8ℱ medium with human truncated vitronectin for cell attachment. An embryonic stem cell line (GENEA002) was used as a positive control. The expression of embryonic stem cell markers (Oct4, Nanog and Sox2), neural crest stem cell markers (nestin and Dlx2) and mesenchymal stem cell surface markers (CD90, CD73 and CD105) were investigated by immunocytochemistry. Mesenchymal stem cell markers CD105, CD73 and CD90 and haematopoietic markers: CD45, CD34, CD11b, CD19 and HLA‐DR were quantified with flow cytometry. Results The early neural progenitor markers nestin and Dlx2 were detected in most serum‐free cultured dental pulp stem cells, regardless of the tooth resorption stage from which they were harvested. Only isolated cells were found that expressed the embryonic stem cell transcription factors Oct4A, Nanog and Sox2, and in the late stages of resorption, no Oct4A was detected. The majority expressed the mesenchymal stem cell markers CD90, CD73 and CD105. Flow cytometry found positive signals for CD90 > 97.3%, CD73 > 99.6% and CD105 > 82.5%, with no detectable differences between resorption stages. Conclusions This study identified populations of dental pulp cells in vitro with markers characteristically associated with embryonic stem cells, neural crest‐derived cells and mesenchymal stem cells. Flow cytometry found CD105 expressed at lower levels than CD90 and CD73. The consistency of stem cell marker expression in cells cultured from teeth at different resorption stages suggests that pre‐exfoliated primary teeth that are free of caries may provide a convenient source of multipotent stem cells for use in regenerative medicine

    Flexible conditional image generation of missing data with learned mental maps

    No full text
    Real-world settings often do not allow acquisition of high-resolution volumetric images for accurate morphological assessment and diagnostic. In clinical practice it is frequently common to acquire only sparse data (e.g. individual slices) for initial diagnostic decision making. Thereby, physicians rely on their prior knowledge (or mental maps) of the human anatomy to extrapolate the underlying 3D information. Accurate mental maps require years of anatomy training, which in the first instance relies on normative learning, i.e. excluding pathology. In this paper, we leverage Bayesian Deep Learning and environment mapping to generate full volumetric anatomy representations from none to a small, sparse set of slices. We evaluate proof of concept implementations based on Generative Query Networks (GQN) and Conditional BRUNO using abdominal CT and brain MRI as well as in a clinical application involving sparse, motion-corrupted MR acquisition for fetal imaging. Our approach allows to reconstruct 3D volumes from 1 to 4 tomographic slices, with a SSIM of 0.7+ and cross-correlation of 0.8+ compared to the 3D ground truth
    corecore