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Abstract. Traditional cortical surface reconstruction is time consum-
ing and limited by the resolution of brain Magnetic Resonance Imag-
ing (MRI). In this work, we introduce Pial Neural Network (PialNN),
a 3D deep learning framework for pial surface reconstruction. PialNN is
trained end-to-end to deform an initial white matter surface to a target
pial surface by a sequence of learned deformation blocks. A local convolu-
tional operation is incorporated in each block to capture the multi-scale
MRI information of each vertex and its neighborhood. This is fast and
memory-efficient, which allows reconstructing a pial surface mesh with
150k vertices in one second. The performance is evaluated on the Hu-
man Connectome Project (HCP) dataset including T1-weighted MRI
scans of 300 subjects. The experimental results demonstrate that Pi-
alNN reduces the geometric error of the predicted pial surface by 30%
compared to state-of-the-art deep learning approaches. The codes are
publicly available at https://github.com/m-qiang/PialNN.

1 Introduction

As an essential part in neuroimage processing, cortical surface reconstruction
aims to extract 3D meshes of the inner and outer surfaces of the cerebral cortex
from brain MRI, also known as the white matter and pial surfaces. The extracted
surface can be further analyzed for the prediction and diagnosis of brain diseases
as well as for the visualisation of information on the cortex. However, it is difficult
to extract a geometrically accurate and topologically correct cortical surface due
to its highly curved and folded geometric shape [3,6].

The typical cortical surface reconstruction pipeline, which can be found in ex-
isting neuroimage analysis tools [1,3,5,8,15], consists of two main steps. Firstly,
an initial white matter surface mesh is created by applying mesh tessellation
or marching cubes [12] to the segmented white matter from the scanned im-
age, along with topology fixing to guarantee the spherical topology. The initial
mesh is further refined and smoothed to produce the final white matter surface.
Secondly, the pial surface mesh is generated by expanding the white matter
surface iteratively until it reaches the boundary between the gray matter and
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cerebrospinal fluid or causes self-intersection. One limitation of such approaches
is the high computational cost. For example, FreeSurfer [5], a widely used brain
MRI analysis tool, usually takes several hours to extract the cortical surfaces for
a single subject.

As a fast and end-to-end alternative approach, deep learning has shown
its advantages in surface reconstruction for general shape objects [7,9,13,14,18]
and medical images [2,10,16,19]. Given brain MRI scans, existing deep learning
frameworks [2,10] are able to predict cortical surfaces within 30 minutes. How-
ever, although the white matter surfaces can be extracted accurately, the pial
surface reconstruction is still challenging. Due to its highly folded and curved
geometry, the pial surface reconstructed by previous deep learning approaches
tends to be oversmooth to prevent self-intersections, or fails to reconstruct the
deep and narrow sulcus region.

In this work, we propose a fast and accurate architecture for reconstructing
the pial surface, called Pial Neural Network (PialNN). Given an input white
matter surface and its corresponding MR image, PialNN reconstructs the pial
surface mesh using a sequence of learned deformation blocks. In each block,
we introduce a local convolutional operation, which applies a 3D convolutional
neural network (CNN) to a small cube containing the MRI intensity of a ver-
tex and its neighborhood. Our method can work on brain MRI at arbitrary
resolution without increasing the complexity. PialNN establishes a one-to-one
correspondence between the vertices in white matter and pial surface, so that a
point-to-point loss can be minimized directly without any regularization terms
or point matching. The performance is evaluated on the publicly available Hu-
man Connectome Project (HCP) dataset [17]. PialNN shows superior geometric
accuracy compared to existing deep learning approaches.

The main contributions and advantages of PialNN can be summarized as:

– Fast: PialNN can be trained end-to-end to reconstruct the pial surface mesh
within one second.

– Memory-efficient: The local convolutional operation enables PialNN to
process a high resolution input mesh (>150k vertices) using input MR brain
images at arbitrary resolution.

– Accurate: The proposed point-to-point loss, without additional vertex match-
ing or mesh regularization, improves the geometric accuracy of the recon-
structed surfaces effectively.

2 Related Work

Deep learning-based surface reconstruction approaches can be divided into im-
plicit [13,14] and explicit methods [7,9,18]. The former use a deep neural network
(DNN) to learn an implicit surface representation such as an occupancy field [13]
and a signed distance function [14]. A triangular mesh is then extracted using
isosurface extraction. For explicit methods [7,9,18], a DNN is trained end-to-end
to deform an initial mesh to a target mesh, producing an explicit mesh directly.
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Fig. 1: The proposed architecture for pial surface reconstruction (PialNN). The
input white matter surface is deformed by three deformation blocks to predict
a pial surface. Each deformation block incorporates two types of features: point
features from the white matter surface vertices and local features from the brain
MRI. Finally, the output mesh is refined using Laplacian smoothing.

Previous deep learning frameworks [2,10] for cortical surface reconstruc-
tion mainly adopted implicit methods. Henschel et al. [10] proposed FastSurfer
pipeline, which improved FreeSurfer [5] by introducing a fast CNN for whole-
brain segmentation instead of atlas-based registration. The cortical surface is
then extracted by a non-learning approach [5]. Cruz et al. [2] proposed DeepCSR
framework to predict the implicit representation of both the inner and outer cor-
tical surfaces. Explicit surfaces are extracted by the marching cubes algorithm
[12]. Implicit methods require a time-consuming topology correction, while ex-
plicit methods can pre-define an initial mesh with spherical topology to achieve
fast inference. Wickramasinghe et al. [19] presented an explicit framework, called
Voxel2Mesh, to extract 3D meshes from medical images. Voxel2Mesh employed
a series of deformation and unpooling layers to deform an initial mesh while
increasing the number of vertices iteratively. Regularization terms are utilized
to improve the mesh quality and prevent self-intersections, whereas these terms
tend to oversmooth the output mesh. Conversely, our PialNN uses explicit meth-
ods to learn the pial surface reconstruction without any regularization terms.

3 Method

We first introduce necessary notations to formulate the problem. Let M =
(V, E ,F) be a 3D triangular mesh, where V ⊂ R3, E and F are the sets of
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vertices, edges and faces of the mesh. The corresponding coordinates and nor-
mal of the vertices are represented by v,n ∈ R|V|×3, where |V| is the number of
vertices. Given an initial white matter surface M0 = (V0, E0,F0) and a target
pial surfaceM∗ = (V∗, E∗,F∗), we assume thatM0 andM∗ have the same con-
nectivity, i.e. E0 = E∗ and F0 = F∗. Given a brain MRI volume I ∈ RL×W×H ,
the goal of deep learning-based pial surface reconstruction is to learn a neural
network g such that the coordinates v∗ = g(v0,n0, I).

As illustrated in Figure 1, the PialNN framework aims to learn a series of
deformation blocks fθl for 1 ≤ l ≤ L to iteratively deform the white matter sur-
faceM0 to match the target pial surfaceM∗, where θl represents the learnable
parameter of the neural network.

3.1 Deformation Block

Let Ml be the l-th intermediate deformed mesh. The vertices of Ml can be
computed as:

vl = vl−1 + ∆vl−1 = vl−1 + fθl(vl−1,nl−1, I), (1)

for 1 ≤ l ≤ L, where fθl is the l-th deformation block represented by a neu-
ral network. The purpose of PialNN is to learn the optimal fθl , such that the
final predicted mesh ML matches the target mesh M∗, i.e. ML = M∗. The
architecture of the deformation block is shown in Figure 1. In this approach, the
deformation block predicts a displacement ∆v based on the point feature and
local feature of the vertex v.

Point Feature. The point feature of a vertex is defined as the feature extracted
from its coordinate v and normal n, which includes the spacial and orientation
information. We extract the point feature using a multi-layer perceptron (MLP).

Local Feature. We adopt a local convolutional operation to extract the local
feature of a vertex from brain MRI scans. Rather than using a memory-intensive
3D CNN on the entire MRI volume [19], this method only employs a CNN
on a cube containing MRI intensity of each vertex and its neighborhood. As
illustrated in Figure 1, for each vertex, we find the corresponding position in
the brain MRI volume. Then a K3 grid is constructed based on the vertex to
exploit its neighborhood information. The voxel value of each point in the grid
is sampled from the MRI volume. Such a cube sampling approach extracts a K3

voxel cube containing the MRI intensity of each vertex and its neighborhood.
Furthermore, we build a 3D image pyramid including 3 scales (1, 1/2, 1/4)

and use cube sampling on the different scales. Therefore, each vertex is repre-
sented by a K3 local cube with 3 channels containing multi-scale information. A
3D CNN with kernel size K is then applied to each local cube, which converts
the cube to a local feature vector of its corresponding vertex. An MLP layer is
followed to further refine the local feature.

Such a local convolutional operation is memory- and time-efficient. As there
are total |V| cubes with 3 channels, it only executes the convolution operators
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3|V| times, which are far less than L×W ×H times for running a 3D CNN on
the full MRI. Since the complexity only relies on the number of vertices |V|, the
local convolutional operation can process MRI volumes at arbitrary resolution
without increasing the complexity.

The point and local features are concatenated as the input of several MLP layers
followed by leaky ReLU activation, which predict a 3D displacement ∆vl−1. The
new vertices vl are updated according to Equation 1, and act as the input for
the next deformation block.

3.2 Smoothing and Training

Laplacian Smoothing. After three deformation blocks, a Laplacian smooth-
ing is used to further smooth the surface and prevent self-intersections. For each
vertex vi ∈ R3, the smoothing is defined as v̄i = (1−λ)vi+λ

∑
j∈N (i) v

j/|N (i)|,
where λ controls the degree of smoothness and N (i) is the adjacency list of the
i-th vertex. The smoothing layer is incorporated in both training and testing.

Loss Function. The Chamfer distance [4] is commonly used as the loss func-
tion for training explicit surface reconstruction models [18,19]. It measures the
distance from a vertex in one mesh to the closest vertex in the other mesh
bidirectionally. For PialNN, since the input and target mesh have the same con-
nectivity, we can directly compute a point-to-point mean square error (MSE)
loss between each pair of vertices. Therefore, the loss function is defined as:

L(ML,M∗) = L(vL,v∗) = ‖vL − v∗‖22. (2)

Rather than computing the loss for all intermediate meshesMl, we only compute
the loss between the final predicted pial surface ML and the ground truth M∗,
because the gradient can be backpropagated to all deformation blocks fθl for
1 ≤ l ≤ L. The parameters θl are learned by minimizing the MSE loss.

It is noted that no explicit regularization term is required in the loss function,
as the vertex will learn from the point-to-point supervision to move to a correct
location. Such loss function effectively improves the geometric accuracy of the
output mesh. Besides, we use an additional Laplacian smoothing after training
to improve the mesh quality and to fix self-intersections.

4 Experiments

Dataset. The proposed framework is evaluated using the WU-Minn Human
Connectome Project (HCP) Young Adult dataset [17].We use 300 subjects, each
of which has T1-weighted brain MRI scans with 1 mm isotropic resolution. Each
brain MRI is cropped to size of (192, 224, 192). The 300 subjects are split into
200/50/50 for training/validation/testing. The input white matter surface and
ground truth pial surface are generated by FreeSurfer [5]. Each surface has ap-
proximately 150k vertices and 300k faces for one hemisphere. It is noted that
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the input white matter surfaces can be generated by other faster tools [10,15].

Fig. 2: Visualization of the reconstructed pial surface meshes.

Implementation Details. PialNN consists of L = 3 layers of deformation
blocks. We set the smoothing coefficient λ = 1 and kernel size K = 5 for 3D
CNN. The Adam optimizer with learning rate 10−4 is used for training the
model for 200 epochs with batch size 1. Experiments compare the performance
of PialNN with state-of-the-art deep learning baselines, such as Voxel2Mesh [19]
and DeepCSR [2]. All models are trained on an Nvidia GeForce RTX3080 GPU.

Since Voxel2Mesh uses iterative mesh unpooling, the input white matter sur-
face is simplified to a mesh with 5120 faces using quadric error metric decima-
tion. For DeepCSR, we train two different models based on occupancy fields
(DeepCSR-OCC) and signed distance functions (DeepCSR-SDF) for ground
truth. The size of the implicit representation for DeepCSR is set to (192, 224,
192) in order to have a reasonable number of vertices for a fair comparison.

Geometric Accuracy. We evaluate the geometric accuracy of the PialNN
framework by computing the error between the predicted pial surfaces and
FreeSurfer ground truth. We utilize three distance-based metrics to measure
the geometric error, namely, Chamfer distance (CD) [4,18], average absolute
distance (AD) [2] and Hausdorff distance (HD) [2]. The CD measures the mean
distance between two sets of vertices. AD and HD compute the average and maxi-
mum distance between two sets of 150k sampled points from surface meshes. All
distances are computed bidirectionally in millimeters (mm). A lower distance
means a better result. The experimental results are given in Table 1, which
shows that PialNN achieves the best geometric accuracy compared with existing
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Table 1: Geometric error for pial surface reconstruction. The results include
the comparison with existing deep learning baselines and the ablation study.
Chamfer distance (mm), average absolute distance (mm), and Hausdorff distance
(mm) are computed for both left and right hemisphere. A lower distance means
a better result.

Left Pial Right Pial
Method Chamfer Average Hausdorff Chamfer Average Hausdorff

PialNN (Ours) 0.39±0.01 0.21±0.02 0.45±0.04 0.39±0.02 0.20±0.02 0.44±0.04
Voxel2Mesh 0.58±0.03 0.34±0.04 0.82±0.09 0.57±0.02 0.31±0.02 0.80±0.07
DeepCSR-OCC 0.66±0.04 0.42±0.04 0.87±0.13 0.65±0.05 0.40±0.04 0.88±0.20
DeepCSR-SDF 0.72±0.07 0.45±0.06 1.23±0.36 0.78±0.11 0.49±0.09 1.58±0.54

Single Scale 0.42±0.02 0.23±0.02 0.50±0.05 0.43±0.02 0.23±0.02 0.51±0.05
Point Sampling 0.56±0.03 0.40±0.04 0.87±0.09 0.57±0.03 0.41±0.05 0.91±0.11
GCN 0.39±0.02 0.21±0.02 0.46±0.04 0.40±0.01 0.21±0.01 0.46±0.04

deep learning baselines. It reduces the geometric error by > 30% compared to
Voxel2Mesh and DeepCSR in all three distances (mm). In addition, the quality
of the predicted pial surface mesh is visualized in Figure 2.

Figure 3 provides a detailed visual comparison between different approaches.
The DeepCSR-SDF-2x represents DeepCSR-SDF with input size of (384, 448,
384). We focus on the areas highlighted by the blocks in different colors. In the
red block, the DeepCSR frameworks fail to distinguish two separate regions in
the surface. The issue remains unsolved after increasing the input size. The yel-
low block indicates an inaccurate Voxel2Mesh prediction since the mesh is over-
smoothed. In the orange block, only FreeSurfer and PialNN reconstruct the deep
and narrow sulci accurately. The green block indicates the error of Voxel2Mesh
and DeepCSR-OCC in a sulcus region. It is noted that PialNN makes a correct
reconstruction in all highlighted areas.

Fig. 3: A visual evaluation of the predicted pial surfaces (cyan colour).

Figure 3 further shows that the predicted mesh from Voxel2Mesh is over-
smoothed, which can be a result of the used regularization terms. Besides, it
loses the geometric prior provided by the input white matter surface due to the
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mesh simplification. Regardless of the input size, DeepCSR is prone to fail in the
deep sulcus regions, since the implicit representation can be affected by partial
volume effects.

Ablation Study. We consider three ablation experiments. First, we only use
single-scale brain MRI rather than a multi-scale image pyramid. Second, instead
of cube sampling, we only employ point sampling, which samples the MRI voxels
at the exact position of each vertex. Third, we substitute the MLP layers with
Graph Convolutional Networks (GCN) [11]. The results are listed in Table 1 and
the error maps are given in Figure 4, which shows the Chamfer distance between
the output surface and the FreeSurfer ground truth. Multi-scale input slightly
improves the geometric accuracy, while the cube sampling contributes a lot to
the performance of PialNN. There is no notable improvement after replacing
MLP with GCN layers but the memory usage has increased.

Fig. 4: Error maps of the pial surface from
ablation study. The color visualizes the
Chamfer distance ranging from 0 to 2 mm.

Fig. 5: Runtime (seconds) of deep
learning-based approaches for pial
surface reconstruction.

Runtime. We compute the runtime for each framework, as shown in Figure 5,
for both left and right pial surfaces reconstruction. PialNN achieves the fastest
runtime with 0.52 seconds, whereas traditional pipelines [5,8,15] usually take
>10 minutes for pial surface generation based on the white matter surface.
Voxel2Mesh needs 4.8 seconds as it requires mesh simplification for the input.
DeepCSR runs in >100 seconds due to the time-consuming topology correction.

5 Conclusion

PialNN is a fast and memory-efficient deep learning framework for cortical
pial surface reconstruction. The proposed framework learns several deformation
blocks to generate a pial surface mesh from an input white matter surface. Each
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block incorporates the point feature extracted from the coordinates and nor-
mals, as well as the local feature extracted from the MRI intensity of the vertex
and its neighborhood. Experiments demonstrate that our framework achieves
the best performance with highest accuracy and fastest runtime (within one
second) compared to state-of-the-art deep learning baselines. A future direction
will be to extend the PialNN framework to predict the segmentation labels and
reconstruct both cortical white matter and pial surfaces using only the input
MR brain images.
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